Advertisement

Preparation and properties of Mg0.2Zn0.8O:Al UV transparent conducting thin films deposited by RF magnetron sputtering at room temperature with rapid annealing

  • Hua Wang
  • Zhu Huang
  • Ji-wen Xu
  • Ling Yang
  • Shang-ju Zhou
Article

Abstract

Mg0.2Zn0.8O:Al UV transparent conducting thin films were deposited by RF magnetron sputtering at room temperature with a rapid annealing process. Effects of sputtering power, argon gas pressure and annealing temperature on structure, optical and electrical properties of Mg0.2Zn0.8O:Al films were investigated. The experimental results show that Mg0.2Zn0.8O:Al thin films exhibit high preferred c-axis-orientation. The sputtering power, argon gas pressure and annealing temperature all exert a strong influence on the electrical resistivity of Mg0.2Zn0.8O:Al thin films due to the variation of carrier concentration and mobility in films derived from the change of effective doping and crystallinity. The lowest electrical resistivity of Mg0.2Zn0.8O:Al thin films is 3.5 × 10−3 Ω·cm when the sputtering power is 200 W, the argon gas pressure is 2.0 Pa and the annealing temperature is above 500 °C. The transparent spectrum range of Mg0.2Zn0.8O:Al thin films extend to ultraviolet band and the optical transmittance is between 80 and 90%, but the sputtering power, argon gas pressure and annealing temperature all exert little influence on optical transmittance.

Keywords

Electrical Resistivity Energy Dispersive Spectroscopy Spectrum Effective Doping Transparent Conducting Oxide Film Ultraviolet Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Research funds of Guangxi Key Laboratory of Information Materials (No. 0710908-05-Z) and Guangxi Specific Project Construction of Infrastructure Platform for Science and Technology (No. 10-046-13).

References

  1. 1.
    T. Minami, MRS Bull. 8, 38 (2000)CrossRefGoogle Scholar
  2. 2.
    J.W. Xu, H. Wang, L. Yang Ling, M.H. Jiang, S. Wei, T.T. Zhang, Mater. Sci. Eng. B 167, 182 (2010)CrossRefGoogle Scholar
  3. 3.
    K. Koike, K. Hama, I. Nakashima, G.Y. Takada, K.I. Ogata, S. Sasa, M. Inoue, M. Yano, J. Cryst. Growth 278, 288 (2005)CrossRefGoogle Scholar
  4. 4.
    R. Thangavel, M. Rajagopalan, J. Kumar, Solid State Commun. 137, 507 (2006)CrossRefGoogle Scholar
  5. 5.
    R. Thangavel, M. Rajagopalan, J. Kumar, Solid State Commun. 137, 507 (2006)CrossRefGoogle Scholar
  6. 6.
    S. Choopun, R.D. Vispute, W. Yang, R.P. Sharma, T. Venkatesan, Appl. Phys. Lett. 80, 1529 (2002)CrossRefGoogle Scholar
  7. 7.
    K. Matsubara, H. Tampo, H. Shibata, Appl. Phys. Lett. 85, 1374 (2004)CrossRefGoogle Scholar
  8. 8.
    D.J. Cohen, K.C. Ruthe, S.A. Barnett, J. Appl. Phys. 96, 459 (2004)CrossRefGoogle Scholar
  9. 9.
    Z. Vashaei, T. Minegishi, H. Suzuki, T. Hanada, M.W. Cho, T. Yao, A. Setiawan, J. Appl. Phys. 98, 54911 (2005)CrossRefGoogle Scholar
  10. 10.
    A. Nakamura, K. Yamamoto, J. Ishihara, T. Aoki, J. Temmyo, Jpn. J. Appl. Phys. 44, 7267 (2005)CrossRefGoogle Scholar
  11. 11.
    H. Wang, Z. Huang, J.W. Xu, L. Yang, M.F. Ren, J. Mater. Sci.: Mater. Electro. 21, 1115 (2010)CrossRefGoogle Scholar
  12. 12.
    Y. Igasaki, H. Saito, Thin Solid Films 199, 223 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Hua Wang
    • 1
  • Zhu Huang
    • 1
  • Ji-wen Xu
    • 1
  • Ling Yang
    • 1
  • Shang-ju Zhou
    • 1
  1. 1.Guangxi Key Laboratory of Information MaterialsGuilin University of Electronic TechnologyGuilinChina

Personalised recommendations