Advertisement

Synthesis and magnetic properties of conventional and microwave calcined barium hexaferrite powder

  • S. Kanagesan
  • S. Jesurani
  • R. Velmurugan
  • M. Sivakumar
  • C. Thirupathi
  • T. Kalaivani
Article

Abstract

Single phase nanoparticles of barium hexaferrite (BaFe12O19–BaF) were synthesized by sol–gel method using metal nitrates as source and d-Fructose as a fuel. The prepared precursors were calcined by two different calcination techniques, using conventional furnace and microwave furnace. The samples are characterized using powder X-ray diffraction, theromogravimetric analysis and vibration sample magnetometer. Thermal analysis studies showed exothermic and endothermic reaction peaks from room temperature to 1,200 °C. X-ray diffraction studies established the formation temperature of single phase BaFe12O19. HR-SEM results showed the dispersed particles of hexagonal structure in platelet form. The broad hysteresis loop showed that the barium hexaferrite powder was in good crystalline nature.

Keywords

Microwave Sinter Barium Hexaferrite Conventional Furnace BaFe2O4 Microwave Furnace 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank SRM University for providing the facilities available in Nanotechnology center.

References

  1. 1.
    D. Lisijak, M. Drofenik, J. Eur. Ceram. Soc 27, 4515 (2007)CrossRefGoogle Scholar
  2. 2.
    M.M. Rashad, M. Radwan, M.M. Hessien, J. Alloys Comps. 453, 304 (2008)CrossRefGoogle Scholar
  3. 3.
    D. Mishra, S. Anand, R.K. Panda, R.P. Das, Mater. Chem. Phys. 86, 132 (2004)CrossRefGoogle Scholar
  4. 4.
    R.M. Garcia, E.R. Ruiz, E.E. Rams, R.M. Sanchez, J. Magn. Magn. Mater. 223, 133 (2001)CrossRefGoogle Scholar
  5. 5.
    P. Shepherd, K.K. Mallick, R.J. Green, J. Magn. Magn. Mater. 311, 683 (2007)CrossRefGoogle Scholar
  6. 6.
    Q. Mohsen, J. Alloys Comps. 500, 125 (2010)CrossRefGoogle Scholar
  7. 7.
    S. Ramesh, C.Y. Tan, S.B. Bhaduri, W.D. Teng, I. Sopyan, J. Mater. Process. Technol. 206, 221 (2008)CrossRefGoogle Scholar
  8. 8.
    A. Mondal, A. Upadhyaya, D. Agrawal, Mat. Sci. Eng. A 527, 6870 (2010)CrossRefGoogle Scholar
  9. 9.
    A. Ataie, S. Heshmatimanesh, H. Kazempour, J. Mat. Sci. 37, 2125 (2002)CrossRefGoogle Scholar
  10. 10.
    H. Shang, J. Wang, Q.F. Liu, Mat. Sci. Eng. A 456, 130 (2007)CrossRefGoogle Scholar
  11. 11.
    D.S. Patil, B.C. Mutsuddy, Ceramic Transactions 21, 301 (1991)Google Scholar
  12. 12.
    Z. Xie, Z. Gui, L. Li, X. Huang, Y. Huang, J. Mat. Sci. 35, 203 (2000)CrossRefGoogle Scholar
  13. 13.
    M.C.L. Patterson, R.M. Kimber, P.S. Apte, in Microwave Processing of Materials II, ed. by B. Snyder, W.H. Sutton, M.F. Iskander, D.L. Johnson, Mater. Res. Soc. Symp. Proc 189, 257 (1990)Google Scholar
  14. 14.
    X. Tang, B.Y. Zhao, K.A. Hu, J. Mat. Sci. 41, 3867 (2006)CrossRefGoogle Scholar
  15. 15.
    J. Dho, E.K. Lee, J.Y. Park, N.H. Hur, J. Magn. Magn. Mater. 285, 164 (2005)CrossRefGoogle Scholar
  16. 16.
    P. Ren, J.G. Guan, X.D. Cheng, Mater. Chem. Phys. 98, 90 (2006)CrossRefGoogle Scholar
  17. 17.
    S. Kanagesan, S. Jesurani, R. Velmurugan, C. Kumar, T. Kalaivani, J. Mat. Sci. Eng. 4, 88 (2010)Google Scholar
  18. 18.
    R. Ramesh, K. Ashok, G.M. Bhalero, S. Ponnusamy, C. Muthamizhchelvan, Cyst. Res. Technol. 45, 956 (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • S. Kanagesan
    • 1
  • S. Jesurani
    • 1
    • 2
  • R. Velmurugan
    • 1
  • M. Sivakumar
    • 1
  • C. Thirupathi
    • 1
  • T. Kalaivani
    • 1
  1. 1.Center for Material Science and Nano Devices, Department of PhysicsSRM UniversityKattankulathurIndia
  2. 2.Department of PhysicsJeyaraj Annapackium College for WomenPeriyakulamIndia

Personalised recommendations