Fabrication and characterization of novel silicon-compatible high-density capacitors

  • Himani Sharma
  • Kanika Sethi
  • P. Markondeya Raj
  • Rao Tummala


System integration and miniaturization demands are driving component technologies towards integrated thin films with higher volumetric efficiencies and component densities. Among the various system components, achieving higher densities with capacitors, integrated in thin film form has been a major challenge for the past few decades. This paper reports the first proof-of-concept demonstration of a novel silicon-compatible high-density capacitor technology. The key novelty stems from the tremendous enhancement in surface area from thin and porous copper nanoelectrodes and conformal alumina dielectric on such nanoelectrodes. Atomic Layer Deposition was chosen as the dielectric process because of its self-limiting, defect-free and conformal deposition on 3-D structures. Alumina with its moderate permittivity and superior dielectric properties over large voltage ranges was employed as the representative dielectric. Thin copper particulate electrodes with conformal counter electrodes showed 10 times higher capacitance density compared to the planar devices, with similar leakage properties. Thicker electrodes showed enormous enhancement in surface area but inferior leakage properties. Combination of compositional and morphological techniques was used to show alumina conformality on complex 3-D structures of copper particulate electrode. Capacitance–Voltage and Current–Voltage characterizations were carried out to confirm the feasibility of the novel high density 3-D capacitor structure.


Atomic Layer Deposition Copper Particle Electrode Thickness Capacitance Density Capacitor Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J.K. Yuan, Z.M. Dang, S.H. Yao, J.W. Zha, T. Zhou, S.T. Li, J. Bai, J. Mater. Chem. 20, 2441 (2010)CrossRefGoogle Scholar
  2. 2.
    M.T. Domonkos, S. Heidger, D. Brown, J.V. Parker, C.W. Gregg, K. Slenes, W. Hackenberger, S. Kwon, E. Loree, T. Tran, IEEE Trans. Plasma Sci. 38, 2686 (2010)CrossRefGoogle Scholar
  3. 3.
    Y. Freeman, R. Hahn, P. Lessner, J. Prymak, C.A.R.T.S. Barcelona, Spain 27, 111 (2007)Google Scholar
  4. 4.
    F. Roozeboom, R. Elfrink, J. Verhoeven, J. Van den Meerakher, F. Holthuysen, Microelectron. Eng. 53, 581 (2000)CrossRefGoogle Scholar
  5. 5.
    S. Chao, F. Dogan, Mat. Lett. 65, 6–978 (2011)Google Scholar
  6. 6.
    H. Tang, Y. Lin, C. Andrews, H.A. Sodano, Nanotechnology 22(1), 015702 (2011)CrossRefGoogle Scholar
  7. 7.
    J. Shin, J. Park, C. Hwang, H. Kim, J. App. Phys. 86, 506 (1999)CrossRefGoogle Scholar
  8. 8.
    J.W. Lim, S.J. Yun, Electrochem. Solid-State Lett. 7(8), F45 (2004)CrossRefGoogle Scholar
  9. 9.
    C. Chaneliere, J.L. Autran, R.A.B. Devine, B. Balland, Mater. Sci. Eng.: R 22(6), 269 (1998)CrossRefGoogle Scholar
  10. 10.
    P. Banerjee, I. Perez, L. Henn-Lecordier, S. Lee, G. Rubloff, Nature Nanotechnol. 4, 292 (2009)CrossRefGoogle Scholar
  11. 11.
    D. Hoogeland, K.B. Jinesh, F. Roozeboom, W.F.A. Besling, W. Keuning, F. Voogt, M.C.M. van de Sanden, W.M.M. Kessels, ECS Trans. 25(4), 389 (2009)CrossRefGoogle Scholar
  12. 12.
    T. Pan, C. Hsieh, T. Huang, J. Yang, P. Kuo, Electron Device Lett. IEEE 28, 954 (2007)CrossRefGoogle Scholar
  13. 13.
    B. Lai, N. Kung, J. Lee, J. App. Phys. 85, 4087 (1999)CrossRefGoogle Scholar
  14. 14.
    M. Ritala, K. Kukli, A. Rahtu, P.I. Räisänen, M. Leskelä, T. Sajavaara, J. Keinonen, Science 288, 319 (2000)CrossRefGoogle Scholar
  15. 15.
    G. Xiong, J.W. Elam, H. Feng, C.Y. Han, H.-H. Wang, L.E. Iton, L.A. Curtiss, M.J. Pellin, M. Kung, H. Kung, P.C. Stair, J. Phys. Chem. B 109, 14059 (2005)CrossRefGoogle Scholar
  16. 16.
    R. Katamreddy, R. Inman, G. Jursich, A. Soulet, C. Takoudis, J. Electrochem. Soc. 153(10), C701 (2006)CrossRefGoogle Scholar
  17. 17.
    R. Katamreddy, R. Inman, G. Jursich, A. Soulet, A. Nicholls, C. Takoudis, Thin Solid Films 515, 6931 (2007)CrossRefGoogle Scholar
  18. 18.
    S. Kucheyev, J. Biener, T.F. Baumann, Y.M. Wang, A.V. Hamza, Z. Li, D.K. Lee, R.G. Gordon, Langmuir 24, 943 (2008)CrossRefGoogle Scholar
  19. 19.
    Y. Freeman, W. Harrell, I. Luzinov, B. Holman, P. Lessner, J. Electrochem. Soc. 156, G65 (2009)CrossRefGoogle Scholar
  20. 20.
    K. Sethi, H. Sharma, P. M. Raj, V. Sundaram, R. Tummala, in Proceedings of 61st Electronic Components and Technology Conference, Florida, USA, May–Jun 2011Google Scholar
  21. 21.
    Y. Zhang, J. Bertrand, R. Yang, S.M. George, Y.C. Lee, Thin Solid Films 517, 3269 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Himani Sharma
    • 1
  • Kanika Sethi
    • 1
  • P. Markondeya Raj
    • 1
  • Rao Tummala
    • 1
  1. 1.Packaging Research CenterGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations