Preparation and photocatalytic activity of N-doped TiO2 nanotube array films

  • Mingming Dang
  • Yi Zhou
  • Hong Li
  • Caixia Lv


The N-doped TiO2 nanotube array films were fabricated directly by one-step electrochemical anodic oxidation of Ti foils in an HF electrolyte containing ammonium and nitrate ions. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDX), and ultraviolet–visible (UV–vis) absorption spectroscopy, respectively. The photocatalytic activities were evaluated by the degradation of methyl orange (MO) under visible light irradiation. The results showed that N dopant was successfully introduced into the TiO2 nanotube array films. The N-doped TiO2 nanotube array films showed a red shift and an enhancement of the absorption in the visible light region compared to the undoped sample. The photocatalytic activities of the N-doped TiO2 samples were much higher than those of the undoped sample. A maximum enhancement of photocatalytic activity was achieved for the N-doped TiO2 sample prepared in 0.07 M HF electrolyte containing 1.0 M NH4NO3, and 81% of MO was degraded in 150 min under visible light irradiation.


TiO2 Photocatalytic Activity Methyl Orange NH4NO3 Visible Light Irradiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (Grant No. 20976016) and the Science and Technology Project of Changsha, China (K1001020-11).


  1. 1.
    J.M. Macak, M. Zlamal, J. Krysa, P. Schmuki, Small. 3, 300–304 (2007)CrossRefGoogle Scholar
  2. 2.
    H.F. Zhuang, C.J. Lin, Y.K. Lai, L. Sun, J. Li, Environ. Sci. Technol. 41, 4735–4740 (2007)CrossRefGoogle Scholar
  3. 3.
    G.K. Mor, K. Shankar, M. Paulose, O.K. Vargheese, C.A. Grimes, Nano. Lett. 6, 215–218 (2006)CrossRefGoogle Scholar
  4. 4.
    M. Paulose, K. Shankar, O.K. Varghese, G.K. Mor, B. Hardin, C.A. Grimes, Nanotechnology 17, 1446–1448 (2006)CrossRefGoogle Scholar
  5. 5.
    O.K. Varghese, D.W. Gong, M. Paulose, K.G. Ong, E.C. Dickey, C.A. Grimes, Adv. Mater. 15, 624–627 (2003)CrossRefGoogle Scholar
  6. 6.
    T. Mukherjee, S.K. Hazra, S. Basu, Mater. Manuf. Process. 21, 247–251 (2006)CrossRefGoogle Scholar
  7. 7.
    O.K. Varghese, G.K. Mor, C.A. Grimes, M. Paulose, N. Mukherjee, J. Nanosci. Nanotech. 4, 733–737 (2004)CrossRefGoogle Scholar
  8. 8.
    O.K. Varghese, M. Paulose, K. Shankar, G.K. Mor, C.A. Grimes, J. Nanosci. Nanotech. 5, 1158–1165 (2005)CrossRefGoogle Scholar
  9. 9.
    M. Paulose, G.K. Mor, O.K. Varghese, K. Shankar, C.A. Grimes, J. Photochem. Photobiol. A: Chem. 178, 8–15 (2006)CrossRefGoogle Scholar
  10. 10.
    A. Di Paola, E. García-López, S. Ikeda, G. Marcì, B. Ohtani, L. Palmisano, Catal. Today 75, 87–93 (2002)CrossRefGoogle Scholar
  11. 11.
    J.J. Xu, Y.H. Ao, D.G. Fu, C.W. Yuan, Colloid Surf. A 334, 107–111 (2009)CrossRefGoogle Scholar
  12. 12.
    F. Dong, W.R. Zhao, Z.B. Wu, Nanotechnology 19, 365607 (2008)CrossRefGoogle Scholar
  13. 13.
    H.F. Yu, J. Phys. Chem. Solids 68, 600–607 (2007)CrossRefGoogle Scholar
  14. 14.
    Y.K. Lai, J.Y. Huang, H.F. Zhang, V.P. Subramaniam, Y.X. Tang, D.G. Guo, L. Sundar, L. Sun, Zh. Chen, Ch.J. Lin, J. Hazard. Mater. 184, 855–863 (2010)CrossRefGoogle Scholar
  15. 15.
    J.S. Wang, Zh.Zh. Wang, H.Y. Li, Y.T. Cui, Y.Ch. Du, J. Alloys Compd. 494, 372–377 (2010)CrossRefGoogle Scholar
  16. 16.
    X.Z. Ding, X.H. Liu, Y.Z. He, J. Mater. Sci. Lett. 15, 1789 (1996)CrossRefGoogle Scholar
  17. 17.
    X.F. Chen, X.C. Wang, Y.D. Hou, J.H. Huang, L. Wu, X.Z. Fu, J. Catal. 255, 59–67 (2008)CrossRefGoogle Scholar
  18. 18.
    J.W. Wang, W. Zhu, Y.Q. Zhang, S.X. Liu, J. Phys. Chem. C 111, 1010–1014 (2007)CrossRefGoogle Scholar
  19. 19.
    J.L. Zhao, X.H. Wang, R.Z. Chen, L.T. Li, Solid State Commun. 134, 705–710 (2005)CrossRefGoogle Scholar
  20. 20.
    H.Y. Hao, J.L. Zhang, Micropor. Mesopor. Mater. 121, 52–57 (2009)CrossRefGoogle Scholar
  21. 21.
    T. Horikawa, M. Katoh, T. Tomida, Micropor. Mesopor. Mater. 110, 397–404 (2008)CrossRefGoogle Scholar
  22. 22.
    J.J. Xu, Y.H. Ao, M.D. Ch, D.G. Fu, Appl. Surf. Sci. 256, 4397–4401 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.College of Chemical and Biological EngineeringChangsha University of Science and TechnologyChangshaPeople’s Republic of China

Personalised recommendations