Preparation and characterization of novel yellow pigments: hollow TiO2 spheres doped with cerium

  • Xiao-Wei Niu
  • Yue-Ming Sun
  • Shou-Nian Ding
  • Chao-Chao Chen
  • Bo Song


Ce-doped TiO2 hollow yellow pigment particles were synthesized by coupling template-directed method with Pechini sol–gel process. The effects of water content, ethanol/acetonitrile volume ratio and tetrabutyl orthotitanate concentration, on the fabrication of PS@TiO2 composite particles (the key intermediate product) were investigated and the final pigments were characterized in detail by X-ray diffraction, transmission electron microscopy, scanning electron microscope, X-ray photoelectron spectroscopy, and UV–vis diffuse reflection. The results show that the optimal water content and ethanol/acetonitrile volume ratio are 0.09 mol dm−3 and 3:1, respectively, for the construction of neat PS@TiO2 core–shell structure without secondary titania particles, and that the damage of hollow spheres can be avoided by increasing the shell thickness, and that the prepared hollow spheres were well-crystallised with anatase phase TiO2 and cubic CeO2. Owing to the intrinsic yellow color and lower density, the as-prepared hollow pigments can be expected to be used for color electronic paper display.


CeO2 Hollow Sphere Shell Particle Titania Coating Hollow Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Natural Science Foundation of China (No. 20905011, 21010102071 and 21075015), the National Basic Research Program of China (2007CB936300) and the Natural Science Foundation of Jiangsu (No. BK2010396, BK2009293) and the Construction and Management Laboratory program of Southeast University (2010-L017) and the Open Research Fund of State Key Laboratory of Bioelectronics, Southeast University. This work was also supported by the Southeast University Creative Foundation (3207040501) and Chemical Research Creative Platform for Graduate.


  1. 1.
    J.A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V.R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, P. Drzaic, Proc. Natl. Acad. Sci. USA 98, 4835 (2001)CrossRefGoogle Scholar
  2. 2.
    Y. Chen, J. Au, P. Kazlas, A. Ritenour, H. Gates, M. McCreary, Nature 423, 136 (2003)CrossRefGoogle Scholar
  3. 3.
    P. Drzaic, Nat. Photonics 3, 248 (2009)CrossRefGoogle Scholar
  4. 4.
    B. Comiskey, J.D. Albert, H. Yoshizawa, J. Jacobson, Nature 394, 253 (1998)CrossRefGoogle Scholar
  5. 5.
    A.R.M. Verschueren, L.W.G. Stofmeel, P.J. Baesjou, M.H.W.M. Delden, K.M.H. Lenssen, M. Mueller, G. Oversluizen, J.J. Glabbeek, J.T.M. Osenga, R.M. Schuurbiers, J. Soc. Inf. Disp. 18, 1 (2010)CrossRefGoogle Scholar
  6. 6.
    R.A. Hayes, B.J. Feenstra, Nature 425, 383 (2003)CrossRefGoogle Scholar
  7. 7.
    H. You, A. J. Steckl, Appl. Phys. Lett. (2010). doi: 10.1063/1.3464963
  8. 8.
    H. Harada, M. Gomyo, Y. Okano, T. Gan, C. Urano, Y. Yamaguchi, T. Uesaka, H. Arisawa, J. Soc. Inf. Disp. 16, 1243 (2008)CrossRefGoogle Scholar
  9. 9.
    R. Ishikawa, M. Omodani, S. Maeda, J. Imaging Sci. Technol. 50, 168 (2006)CrossRefGoogle Scholar
  10. 10.
    P. Andersson, D. Nilsson, P.O. Svensson, M.X. Chen, A. Malmstrom, T. Remonen, T. Kugler, M. Berggren, Adv. Mater. 14, 1460 (2002)CrossRefGoogle Scholar
  11. 11.
    W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H.J. Wang, N. Suzuki, H. Oveisi, Y. Yamauchi, Angew. Chem. Int. Ed. 49, 3956 (2010)Google Scholar
  12. 12.
    J. Heikenfeld, K. Zhou, E. Kreit, B. Raj, S. Yang, B. Sun, A. Milarcik, L. Clapp, R. Schwartz, Nat. Photonics. 3, 292 (2009)CrossRefGoogle Scholar
  13. 13.
    Y.H. Kim, B.J. Park, H.J. Choi, Mol. Cryst. Liq. Cryst. 492, 257 (2008)Google Scholar
  14. 14.
    D.P. Puzzo, A.C. Arsenault, I. Manners, G.A. Ozin, Angew. Chem. Int. Ed. 48, 943 (2009)CrossRefGoogle Scholar
  15. 15.
    K.M.H. Lenssen, P.J. Baesjou, F.P.M. Budzelaar, M.H.W.M. Delden, S.J. Roosendaal, L.W.G. Stofmeel, A.R.M. Verschueren, J.J. Glabbeek, J.T.M. Osenga, R.M. Schuurbiers, J. Soc. Inf. Disp. 17, 383 (2009)CrossRefGoogle Scholar
  16. 16.
    I.B. Jang, J.H. Sung, H.J. Choi, I. Chin, Synth. Met. 152, 9 (2005)CrossRefGoogle Scholar
  17. 17.
    M.P.L. Werts, M. Badila, C. Brochon, A. Hébraud, G. Hadziioannou, Chem. Mater. 20, 1292 (2008)CrossRefGoogle Scholar
  18. 18.
    J. Lee, J. Hong, D.W. Park, S.E. Shim, Opt. Mater. 32, 530 (2010)CrossRefGoogle Scholar
  19. 19.
    M.A. Lee, B.J. Park, I.J. Chin, H.J. Choi, J. Electroceram. 23, 474 (2009)CrossRefGoogle Scholar
  20. 20.
    T.F. Tan, S.R. Wang, S.G. Bian, X.G. Li, Synth. Met. 159, 1739 (2009)CrossRefGoogle Scholar
  21. 21.
    B. Peng, X.W. Meng, F.Q. Tang, X.L. Ren, D. Chen, J. Ren, J. Phys. Chem. C 113, 20240 (2009)CrossRefGoogle Scholar
  22. 22.
    M.K. Kim, C.A. Kim, S.D. Ahn, S.R. Kang, K.S. Suh, Synth. Met. 146, 197 (2004)CrossRefGoogle Scholar
  23. 23.
    X.W. Meng, F.Q. Tang, B. Peng, J. Ren, Nanoscale Res. Lett. 5, 174 (2010)CrossRefGoogle Scholar
  24. 24.
    Q.J. Ning, G.Q. Tan, Y.S. Shi, Physical Properties of Inorganic Materials, 1st edn. (Chemical Industry Press, Beijing, 2006), pp. 279–282Google Scholar
  25. 25.
    P.P. Rao, M.L.P. Reddy, Dyes Pigments 73, 292 (2007)CrossRefGoogle Scholar
  26. 26.
    K.J. Sreeram, C.P. Aby, B.U. Nair, T. Ramasami, Sol. Energy Mater. Sol. Cells 92, 1462 (2008)CrossRefGoogle Scholar
  27. 27.
    Z. Dohnalova, P. Sulcova, M. Trojan, Dyes Pigments 80, 22 (2009)CrossRefGoogle Scholar
  28. 28.
    M. Martos, B. Julian-Lopez, E. Cordoncillo, P. Escribano, J. Phys. Chem. B 112, 2319 (2008)CrossRefGoogle Scholar
  29. 29.
    S.F. Santos, M.C. de Andrade, J.A. Sampaio, A.B. da Luz, T. Ogasawara, J. Therm. Anal. Calorim. 87, 743 (2007)CrossRefGoogle Scholar
  30. 30.
    Z. Kai, X.H. Zhang, H.T. Chen, C. Xin, L.L. Zheng, J.H. Zhang, Y. Bai, Langmuir 20, 11312 (2004)CrossRefGoogle Scholar
  31. 31.
    Z.P. Wang, Y.N. Zhao, J.G. Yu, Chem. J. Chin. Univ.-Chin. 31, 235 (2010)Google Scholar
  32. 32.
    C. Wang, Y.H. Ao, P.F. Wang, J. Hou, J. Qian, S.H. Zhang, J. Hazard. Mater 178, 517 (2010)CrossRefGoogle Scholar
  33. 33.
    B.L. Cushing, V.L. Kolesnichenko, C.J. O’Connor, Chem. Rev. 104, 3893 (2004)CrossRefGoogle Scholar
  34. 34.
    Q. Lü, F. Y. Guo, L. Sun, A. H. Li, L. C. Zhao, J. Appl. Phys. (2008). doi: 10.1063/1.2946730
  35. 35.
    J. Lin, M. Yu, C.K. Lin, X.M. Liu, J. Phys. Chem. C 111, 5835 (2007)CrossRefGoogle Scholar
  36. 36.
    X. Du, J.H. He, Mater. Res. Bull. 44, 1238 (2009)CrossRefGoogle Scholar
  37. 37.
    A. Imhof, Langmuir 17, 3579 (2001)CrossRefGoogle Scholar
  38. 38.
    P. Wang, D. Chen, F.Q. Tang, Langmuir 22, 4832 (2006)CrossRefGoogle Scholar
  39. 39.
    T. Sugimoto, T. Kojima, J. Phys. Chem. C 112, 18760 (2008)Google Scholar
  40. 40.
    T. Kojima, T. Sugimoto, J. Phys. Chem. C 112, 18445 (2008)Google Scholar
  41. 41.
    Z.Y. Shen, L.Y. Li, Y. Li, C.C. Wang, J. Colloid Interface Sci. 354, 196 (2011)CrossRefGoogle Scholar
  42. 42.
    M. Agrawal, A. Pich, N.E. Zafeiropoulos, M. Stamm, Colloid Polym. Sci. 286, 593 (2008)CrossRefGoogle Scholar
  43. 43.
    A. Syoufian, Y. Inoue, M. Yada, K. Nakashima, Mater. Lett. 61, 1572 (2007)CrossRefGoogle Scholar
  44. 44.
    E. Bêche, P. Charvin, D. Perarnau, S. Abanades, G. Flamant, Surf. Interface Anal. 40, 264 (2008)CrossRefGoogle Scholar
  45. 45.
    I. Avramova, D. Stoychev, Ts. Marinova, Appl. Surf. Sci. 253, 1365 (2006)CrossRefGoogle Scholar
  46. 46.
    H.M. Yang, K. Zhang, R.R. Shi, J. Am. Ceram. Soc. 90, 1370 (2007)CrossRefGoogle Scholar
  47. 47.
    S. Ikeda, C. Abe, T. Torimoto, B. Ohtani, J. Photoch. Photobio. A 160, 61 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Xiao-Wei Niu
    • 1
  • Yue-Ming Sun
    • 1
  • Shou-Nian Ding
    • 1
  • Chao-Chao Chen
    • 1
  • Bo Song
    • 1
  1. 1.School of Chemistry and Chemical EngineeringSoutheast UniversityNanjingChina

Personalised recommendations