Advertisement

Properties of neodymium-doped Ca0.15Sr1.85Bi4Ti5O18 ferroelectric ceramics

  • Suhua Fan
  • Fengqing Zhang
  • Guitao Liu
  • Qingbo Tian
  • Luyi Zhu
Article

Abstract

Bismuth-layered compound Ca0.15Sr1.85Bi4−xNdxTi5O18 (CSBNT, x = 0–0.25) ferroelectric ceramics samples were prepared by solid-state reaction method. The effects of Nd3+ doping on their ferroelectric and dielectric properties were investigated. The remnant polarization Pr of CSBNT ceramics increases at beginning then decreases with increasing of Nd3+ doping level, and a maximum Pr value of 9.6 μC/cm2 at x = 0.05 was detected with a coercive field Ec = 80.2 kV/cm. Nd3+ dopant not only decreases the Curie temperature linearly, but also the dielectric constant (εr) and dielectric loss tangent (tan δ). The magnitudes of εr and tan δ at the frequency of 100 kHz are estimated to be 164 and 0.0083 at room temperature, respectively.

Keywords

Perovskite Oxygen Vacancy Ceramic Sample Ferroelectric Property Structural Distortion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The work was jointly supported by National Natural Science Foundation of China (No.50872075). The authors are grateful to Y.S. Chai for helpful discussions.

References

  1. 1.
    B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, W. Jo, Nature 401, 682 (1999)CrossRefGoogle Scholar
  2. 2.
    G.D. Hu, J. Appl. Phys. 100, 096109 (2006)CrossRefGoogle Scholar
  3. 3.
    P.Y. Goh, K.A. Razak, S. Sreekantan, J. Alloys Compd. 475, 758 (2009)CrossRefGoogle Scholar
  4. 4.
    H. Watanabe, T. Mihara, H. Yoshimori, G.A. Paz de Araujo, J. Appl. Phys. 34, 5240 (1995)CrossRefGoogle Scholar
  5. 5.
    H. Irie, M. Miyayama, T. Kudo, J. Appl. Phys. 90, 4089 (2001)CrossRefGoogle Scholar
  6. 6.
    S.T. Zhang, C.S. Xiao, A.A. Fang, B. Yang, B. Sun, Y.F. Chen, Z.G. Liu, Appl. Phys. Lett. 76, 3112 (2000)CrossRefGoogle Scholar
  7. 7.
    F. Qiang, J.H. He, J. Zhu, X.B. Chen, J. Solid State Chem. 179, 1768 (2006)CrossRefGoogle Scholar
  8. 8.
    K. Katol, K. Suzuki, D.S. Fu, K. Nishizawa, T. Miki, J. Appl. Phys. 41, 2110 (2002)CrossRefGoogle Scholar
  9. 9.
    T. Takenaka, K. Sakata, Ferroelectrics 38, 769 (1981)CrossRefGoogle Scholar
  10. 10.
    Y. Shimakawa, Y. Kubo, Y. Tauchi, H. Asano, T. Kamiyama, F. Izumi, Z. Hiroi, Appl. Phys. Lett. 79, 2791 (2001)CrossRefGoogle Scholar
  11. 11.
    J. Zhu, W.P. Lu, X.Y. Mao, Jpn. J. Appl. Phys. 42, 5165 (2003)CrossRefGoogle Scholar
  12. 12.
    Y. Shimakawa, Y. Kubo, Y. Nakagawa, S. Goto, T. Kamiyama, H. Asano, F. Izumi, Phys. Rev. B 61, 6559 (2000)CrossRefGoogle Scholar
  13. 13.
    Y. Noguchi, H. Shimizu, M. Miyayama, K. Oikawa, T. Kamiyama, Jpn. J. Appl. Phys. 40, 5812 (2001)CrossRefGoogle Scholar
  14. 14.
    S.T. Zhang, B. Yang, J.F. Webb, Y.F. Chen, Z.G. Liu, D.S. Wang, Y. Wang, N.B. Ming, J. Appl. Phys. 92, 4599 (2002)CrossRefGoogle Scholar
  15. 15.
    M.S. Tomar, R.E. Melgarejo, S.P. Singh, Microelectronics 36, 574 (2005)CrossRefGoogle Scholar
  16. 16.
    S. Gopalan, C.H. Wong, V. Balu, J.H. Lee, J.H. Han, R. Mohammedali, J.C. Lee, Appl. Phys. Lett. 75, 2123 (1999)CrossRefGoogle Scholar
  17. 17.
    Z.H. Bao, Y.Y. Yao, J.S. Zhu, Y.N. Wang, Mater. Lett. 56, 861 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Suhua Fan
    • 1
  • Fengqing Zhang
    • 1
  • Guitao Liu
    • 1
  • Qingbo Tian
    • 1
  • Luyi Zhu
    • 2
  1. 1.College of Material Science and EngineeringShandong Jianzhu UniversityJinanPeople’s Republic of China
  2. 2.State Key Laboratory of Crystal Materials and Institute of Crystal MaterialsShandong UniversityJinanPeople’s Republic of China

Personalised recommendations