Dependence of electrical and thermal conductivity on temperature in directionally solidified Sn–3.5 wt% Ag eutectic alloy

  • E. Çadırlı
  • M. Şahin
  • R. Kayalı
  • M. Arı
  • S. Durmuş


Sn–3.5 wt% Ag alloy was directionally solidified upward with a constant growth rate (V = 16.5 μm/s) and a temperature gradient (G = 3.3 K/mm) in a Bridgman-type growth apparatus. The variations of electrical resistivity (ρ) with temperature in the range of 293–476 K for the directionally solidified Sn–3.5 wt% Ag eutectic alloy was measured. The measurements indicate that the electrical resistivity of the directionally solidified Sn–Ag eutectic solder increases with increasing temperature. The variations of thermal conductivity of solid phases versus temperature for the same alloy was determined from the Wiedemann-Franz and Smith-Palmer equations by using the measured values of electrical conductivity. From the graphs of electrical resistivity and thermal conductivity versus temperature, the temperature coefficient of electrical resistivity (α TCR ) and the temperature coefficient of thermal conductivity TCT ) for the same alloy were obtained. According to experimental results, the electrical and thermal conductivity of Sn–Ag eutectic solder linearly decrease with increasing the temperature. The enthalpy of fusion (ΔH) and the change of specific heat (ΔC P ) during the transformation at the studied alloy were determined from heating curve during the transformation from eutectic solid to eutectic liquid by means of differential scanning calorimeter (DSC).


Thermal Conductivity Electrical Resistivity Differential Scanning Calorimeter Temperature Coefficient Eutectic Liquid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This project was supported by the Niğde University Scientific Research Project Unit under Contract No: FEB 2009/02. Authors would like to thank to the Niğde University Scientific Research Project Unit for their financial support.


  1. 1.
    F. Guo, J. Mater. Sci.: Mater. Electron. 18, 129 (2007)CrossRefGoogle Scholar
  2. 2.
    S.M.L. Nai, J. Wei, M. Gupta, J. Electron. Mater. 35, 1518 (2006)CrossRefGoogle Scholar
  3. 3.
    P. Babaghorbani, M. Gupta, J. Electron. Mater. 37, 860 (2008)CrossRefGoogle Scholar
  4. 4.
    X.L. Zhong, M. Gupta, Adv. Eng. Mater. 7, 1049 (2005)CrossRefGoogle Scholar
  5. 5.
    F. Ochoa, J.J. Williams, N. Chawla, J. Electron. Mater. 32, 1414 (2003)CrossRefGoogle Scholar
  6. 6.
    D.R. Frear, P.T. Vianco, Metall. Mater. Trans. A 25, 1509 (1994)CrossRefGoogle Scholar
  7. 7.
    J. Glazer, Int. Mater. Rev. 40, 65 (1995)Google Scholar
  8. 8.
    W.J. Plumbridge, C.R. Gagg, J. Mater. Des. Appl. (Part L) 214, 153 (2000)Google Scholar
  9. 9.
    C. Kittel, Introduction to Solid State Physics, 6th Ed (Wiley, New York, 1965)Google Scholar
  10. 10.
    D.R. Poirier, G.H. Geiger, Transport Phenomena in Materials Processing (Mineral, Metals and Materials Society, Warrendale, PA, 1994)Google Scholar
  11. 11.
    F.M. Smith, Bell Syst. Tech. J. 37, 711 (1958)Google Scholar
  12. 12.
    E. Çadırlı, M. Gündüz, J. Mater. Sci. 35, 3837 (2000)CrossRefGoogle Scholar
  13. 13.
    E. Çadırlı, U. Böyük, H. Kaya, N. Maraşlı, K. Keşlioğlu, S. Akbulut, Y. Ocak, J. Alloy. Comp. 470, 150 (2009)CrossRefGoogle Scholar
  14. 14.
    S.Y. Chang, C.F. Chen, S.J. Lin, T.Z. Kattamis, Acta Mater. 51, 6291 (2003)CrossRefGoogle Scholar
  15. 15.
    P.E. Gise, R. Blanchard, Semiconductor and Integrated Circuit Fabrication Techniques (Reston, Reston, 1979)Google Scholar
  16. 16.
    G.S. Kumar, G. Prasad, R.O. Pohl, J. Mater. Sci. 28, 4261 (1993)CrossRefGoogle Scholar
  17. 17.
    I. Kaban, K. Khalouk, M. Köhler, W. Hoyer, J.G. Gasser, J. Electron. Mater. 39, 70 (2010)CrossRefGoogle Scholar
  18. 18.
  19. 19.
    Y. Ocak, S. Aksöz, N. Maraşlı, K. Keşlioğlu, J. Non-Cryst. Solids 356, 1795 (2010)CrossRefGoogle Scholar
  20. 20.
    S. Mhiaoui, F. Sar, J.G. Gasser, J. Non-Cryst. Solids 353, 3628 (2007)CrossRefGoogle Scholar
  21. 21.
    D. Shangguan, A. Achari, Proceedings of The Technical Program at Surface Mount International (1995), p. 423Google Scholar
  22. 22.
    P. Biocca, Proceedings of Surface Mount International Conference, San Jose, California (1998), p. 705Google Scholar
  23. 23.
    P. Babaghorbani, S.M.L. Nai, M. Gupta, J. Alloys Comp. 478, 458 (2009)CrossRefGoogle Scholar
  24. 24.
    M. Kamal, E.S. Gouda, J. Mat. Sci. Mater. Electron. 19, 81 (2008)CrossRefGoogle Scholar
  25. 25.
    S.K. Kang, J. Horkans, P. Andricacos, R. Carruthers, J. Cotte, M. Datta, P. Gruber, J. Harper, K. Kwietniak, C. Sambucetti, L. Shi, G. Brouillette, D. Danovitch, in Proceedings of IEEE 49th Electronic Components and Technology Conference (1999)Google Scholar
  26. 26.
    P. Sebo, P. Stefanik, Kovove Mater 43, 202 (2005)Google Scholar
  27. 27.
    H. Jiang, K. Moon, F. Hua, C. P. Wong, in Proceedings of IEEE 57th Electronic Components and Technology Conferences (2007), p. 54Google Scholar
  28. 28.
    C.Y. Liu, C.H. Lai, M.C. Wang, M.H. Hon, J. Cryst. Growth 290, 103 (2006)CrossRefGoogle Scholar
  29. 29.
    Y.K. Wu, K.L. Lin, B. Salam, J. Electron. Mater. 38, 227 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • E. Çadırlı
    • 1
  • M. Şahin
    • 1
  • R. Kayalı
    • 1
  • M. Arı
    • 2
  • S. Durmuş
    • 3
  1. 1.Department of Physics, Faculty of Arts and SciencesNiğde UniversityNiğdeTurkey
  2. 2.Department of Physics, Faculty of Arts and SciencesErciyes UniversityKayseriTurkey
  3. 3.Department of Physics, Institute of Science and TechnologyErciyes UniversityKayseriTurkey

Personalised recommendations