Study on thermal stability of electroless deposited Ni-Co-P alloy thin film

  • Anuj Kumar
  • Amanpal Singh
  • Mukesh Kumar
  • Dinesh Kumar
  • Sumit Barthwal


The Ni–P and Ni-Co-P alloy thin films were deposited on silicon substrates with electroless technique. The solid state metallurgical reactions were investigated with silicon for the viewpoint of Co co-deposition effect. The alloy film kept amorphous state with increasing Co content even though the P content decreased. The films become more amorphous, and the thermal stability increased with increment of Co content in the deposit. The Co content was varied from 11.013 to 45.068 wt% while P content was decreased from 9.340 to 6.491 wt% by varying the concentration of components in electroless deposition baths. The thermal stability was examined by X-ray diffractometer (XRD), four probe, and atomic force microscopy (AFM). The results indicated the Ni-Co-P alloy films with lower P content show the higher thermal stability then the ordinary Ni–P films and prevent the silicidation at low temperature because the Ni crystallization formation suppressed by the co-deposition of Co.


Amorphous Alloy Sheet Resistance PdCl2 Electroless Plating Alloy Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was suported by the Department of Science and Technology, Ministry of Science, India, under the project number SR/S3/EECE/043/2007.


  1. 1.
    G. Mallory, J. Hajdu (eds.), Electroless plating: fundamentals and applications (CRC, Boca Raton, 1997)Google Scholar
  2. 2.
    S.A. Armyanov, G.S. Sotirova, J. Electrochem. Soc. 136, 5–1575 (1989)CrossRefGoogle Scholar
  3. 3.
    D.H. Kim, K. Aoki, O. Takano, J. Electrochem. Soc. 142, 11–3763 (1995)CrossRefGoogle Scholar
  4. 4.
    H. Matsuda, G.A. Jones, O. Takano, P.J. Grundy, J. Magn. Magn. Mater. 120, 338 (1993)CrossRefGoogle Scholar
  5. 5.
    E.L. Nicholson, M.R. Khan, J. Electrochem. Soc. 133, 11–2342 (1986)CrossRefGoogle Scholar
  6. 6.
    T. Homma, Y. Sezai, T. Osaka, Electrochim. Acta. 42(20–22), 3041 (1997)CrossRefGoogle Scholar
  7. 7.
    T. Homma, Y. Sezai, T. Osaka, Y. Maeda, D.M. Donnet, J. Magn. Magn. Mater. 173, 314 (1997)CrossRefGoogle Scholar
  8. 8.
    W.L. Liu, W.J. Chen, T.K. Tsai, S.H. Hsieh, S.Y. Chang, Appl. Surf. Sci. 253:3843–3848 (2007)CrossRefGoogle Scholar
  9. 9.
    Lee DN, Hur K-H (1999) Scripta. Materialia. 40(12), 1333–1339Google Scholar
  10. 10.
    Y. Shacham-Diamand, V. Dubin, J. Microelectron. Engineering 33, 47–58 (1997)CrossRefGoogle Scholar
  11. 11.
    A. Kumar, M. Kumar, D. Kumar, J. Microelectron. Engineering 87, 387–390 (2010)CrossRefGoogle Scholar
  12. 12.
    D. Shaw (ed.), Atomic diffusion in semiconductors (Plenum, New York, 1973)Google Scholar
  13. 13.
    Koiwa I, Usudo M, Osaka T (1988) J. Electrochem. Soc. 135(5):1222–1228Google Scholar
  14. 14.
    S. Armyanov, E. Valova, A. Franquet, J. Dille, J.-L. Delplancke, J. Electrochem. Soc. 152(9), C612–C619 (2005)CrossRefGoogle Scholar
  15. 15.
    O. Younes, E. Gileadi, Electrochem. Solid-State Lett. 151(6), C385–C391 (2004)Google Scholar
  16. 16.
    O. Younes, L. Zhu, Y. Rosenberg, Y. Shacham-Diamand, E. Gileadi, Langmuir 17, 8270 (2001)CrossRefGoogle Scholar
  17. 17.
    O. Younes-Metzler, L. Zhu, E. Gileadi, Electrochim. Acta. 48, 2551 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Anuj Kumar
    • 1
  • Amanpal Singh
    • 1
  • Mukesh Kumar
    • 1
  • Dinesh Kumar
    • 1
  • Sumit Barthwal
    • 2
  1. 1.Electronic Science DepartmentKurukshetra UniversityKurukshetraIndia
  2. 2.Nano Science and Nano Technology UnitIITKanpurIndia

Personalised recommendations