Journal of Materials Science: Materials in Electronics

, Volume 22, Issue 9, pp 1450–1455 | Cite as

Compositionally graded multilayer BaxSr0.95−xCa0.05TiO3 ceramics prepared by tape casting for use as dielectric materials

  • Qian Qian Jia
  • Hui Ming Ji
  • Xiao Lei Li
  • Yong Hui Xing
  • Hui Liang


Compositionally graded multilayer BaxSr0.95−xCa0.05TiO3 (BSCT) ceramics were prepared via tape casting method using nanometer powders from co-precipitation. Microstructures and dielectric properties of the BSCT system were investigated. The powders were characterized by using transmission electron microscope and BET surface area measurement. Surface morphologies of the sintered samples and multilayer structure were examined by scanning electron microscopy. BSCT particles were of spherical shape with diameters in the range of 73–93 nm. Their specific surface areas were in the range of 11.7–14.6 m2/g. The graded BSCT ceramics with nine layers laminated in vertical way exhibited a higher sintered density, with an average grain size of 0.4 μm, after sintered at 1,200 °C. Dielectric constant, dielectric loss and tunability of the graded ceramics were 2223.94, 1.5 × 10−3 at 2 MHz and 42.9% at 3.0 kV/mm, with good dielectric temperature and frequency stability, which made it a promising candidate used for tunable ceramic capacitors and phase shifters.


BaxSr0.95−xCa0.05TiO3 Graded multilayer Tape casting Dielectric properties 


  1. 1.
    L.C. Sengupta, E. Ngo, J. Synowczynski, S. Sengupta, IEEE. T. Microw. Theory. 44, 845 (1996)Google Scholar
  2. 2.
    J.H. Jeon, J. Eur. Ceram. Soc. 24, 1045 (2004)CrossRefGoogle Scholar
  3. 3.
    W. Li, Z.J. Xu, R.Q. Chu, P. Fu, J.G. Hao, J. Alloy. Compd. 499, 255 (2010)CrossRefGoogle Scholar
  4. 4.
    T. Hu, H. Jantunen, A. Uusimäki, S. Leppävuori, J. Eur. Ceram. Soc. 24, 1111 (2004)CrossRefGoogle Scholar
  5. 5.
    D.S. Jung, S.K. Hong, J.S. Cho, Y.C. Kang, Mater. Res. Bull. 43, 1789 (2008)CrossRefGoogle Scholar
  6. 6.
    N.C. Pramanik, N. Anisha, P.A. Abraham, N. Rani Panicker, J. Alloy. Compd. 476, 524 (2009)CrossRefGoogle Scholar
  7. 7.
    J.D. Cui, G.X. Dong, Z.M. Yang, J. Du, J. Alloy. Compd. 490, 353 (2010)CrossRefGoogle Scholar
  8. 8.
    H.T. Jiang, J.W. Zhai, X.J. Chou, X. Yao, Mater. Res. Bull. 44, 566 (2009)CrossRefGoogle Scholar
  9. 9.
    K.B. Chong, L.B. Kong, L.F. Chen, L. Yan, C.Y. Tan, T. Yang, C.K. Ong, T. Osipowicz, J. Appl. Phys. 95, 1416 (2004)CrossRefGoogle Scholar
  10. 10.
    J.Y. Wang, J.J. Zhang, X. Yao, J. Alloy. Compd. 505, 783 (2010)CrossRefGoogle Scholar
  11. 11.
    X.M. Chen, T. Wang, J. Li, Mater. Sci. Eng., B. 113, 117 (2004)CrossRefGoogle Scholar
  12. 12.
    O.G. Vendik, E.K. Hollmann, A.B. Kozyrev, A.M. Prudan, J. Supercond. 12, 325 (1999)CrossRefGoogle Scholar
  13. 13.
    M.H. Zhang, H. Wang, F. Xiang, X. Yao, Int. J. Appl. Ceram. Technol. 6, 257 (2009)CrossRefGoogle Scholar
  14. 14.
    Z.G. Ban, S.P. Alpay, J.V. Mantese, Integr. Ferroelectr. 58, 1281 (2003)CrossRefGoogle Scholar
  15. 15.
    V.N. Shut, S.R. Syrtsov, V.L. Trublovsky, A.D. Poleyko, S.V. Kostomarov, L.P. Mastyko, Ferroelectrics 386, 125 (2009)CrossRefGoogle Scholar
  16. 16.
    L. Zhang, W.L. Zhong, C.L. Wang, P.L. Zhang, Y.G. Wang, Phys. Status. Solidi. A. 168, 543 (1998)CrossRefGoogle Scholar
  17. 17.
    R.E. Mistler, E.R. Twiname, Tape casting: Theory and Practice (The American Ceramic Society, Westerville, OH, 2000), p. 13Google Scholar
  18. 18.
    X. Xu, G.E. Hilmas, J. Am. Ceram. Soc. 89(8), 2496 (2006)CrossRefGoogle Scholar
  19. 19.
    P.K. Sharma, V.V. Varadan, V.K. Varadan, Smart. Mater. Struct. 12, 749 (2003)CrossRefGoogle Scholar
  20. 20.
    X.J. Chou, J.W. Zhai, X. Yao, Appl. Phys. Lett. 91, 122908 (2007)CrossRefGoogle Scholar
  21. 21.
    S. Zhong, S.P. Alpay, J.V. Mantese, Appl. Phys. Lett. 88, 132904 (2006)CrossRefGoogle Scholar
  22. 22.
    H.N. Al-Shareef, D. Domos, M.V. Raymond, R.W. Schwartz, J. Electroceram. 2, 145 (1997)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Qian Qian Jia
    • 1
  • Hui Ming Ji
    • 1
  • Xiao Lei Li
    • 1
  • Yong Hui Xing
    • 1
  • Hui Liang
    • 1
  1. 1.Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and EngineeringTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations