Journal of Materials Science: Materials in Electronics

, Volume 22, Issue 9, pp 1258–1263 | Cite as

Electrical and structural properties of LiNbO3 films, grown by RF magnetron sputtering

  • V. Iyevlev
  • A. Kostyuchenko
  • M. Sumets
  • V. Vakhtel


Nanocrystalline films of LiNbO3 on substrates (001)Si and (001)Si–SiO2 were synthesized by the method of RF magnetron sputtering. The elemental composition, structure of the LiNbO3 films, and also—electrical properties of heterostructures (001)Si–LiNbO3 and (001)Si–SiO2–LiNbO3 were studied. The dielectric constant of the LiNbO3 films calculated from the capacitance at the accumulation region was about 28. The resistivity was 1·109 ohm cm for films on (100)Si and 1.6·1011 ohm cm for films on (001)Si–SiO2. It has been determined that transmission of the current in the studied structures during direct biases is defined by hopping conduction, and, during reverse biases—by the Poole–Frenkel effect.


Dielectric Constant Dielectric Loss Versus Characteristic LiNbO3 Lithium Niobate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The present work was conducted with the assistance of Russian Foundation for Basic Research (RFBR) (grant №09-03-00189a).


  1. 1.
    S. Kondo, S. Miyazawa, S. Fusimi, K. Sugii, Appl. Phys. Lett. 26, 489 (1975)CrossRefGoogle Scholar
  2. 2.
    B.J. Curtis, H.R. Brunner, Mater. Res. Bull. 10, 515 (1975)CrossRefGoogle Scholar
  3. 3.
    S.B. Ogale, R.N. Dikshit, S.M. Kanetkar, J. Appl. Phys. 71, 5718 (1992)CrossRefGoogle Scholar
  4. 4.
    K. Nashimoto, M.J. Cima, P.C. McIntyre, W.E. Rhine, J. Mater. Res. 10, 2564 (1995)CrossRefGoogle Scholar
  5. 5.
    A.Z. Simões, M.A. Zaghete, B.D. Stojanovic, C.S. Riccardi, A. Ries, A.H. Gonzalez, J.A. Varela, Mater. Lett. 57, 2333 (2003)CrossRefGoogle Scholar
  6. 6.
    S.-K. Park, M.-S. Baek, S.-C. Bae, S.-Y. Kwon, J.-H. Kim, K.-W. Kim, Jpn. J. Appl. Phys. 38, 6483 (1999)CrossRefGoogle Scholar
  7. 7.
    S.-W. Choi, Y.-S. Choi, D.-G. Lim, S.-I. Moon, S.-H. Kim, B.-S. Jang, Y. Junsin, Korean J. Ceram. 6, 138 (2000)Google Scholar
  8. 8.
    T.-H. Lee, F.-T. Hwang, C.-T. Lee, H.-Y. Lee, Mater. Sci. Eng. 136, 92 (2007)CrossRefGoogle Scholar
  9. 9.
    P.J. Hansen, Y. Terao, Y. Wu, A. Robert, J.S. Speck, J. Vac. Sci. Technol. 23, 162 (2005)CrossRefGoogle Scholar
  10. 10.
    S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1969), p. 812Google Scholar
  11. 11.
    K. Nassau, H.J. Levinstein, G.M. Laicono, J. Phys. Chem. Solids. 27, 989 (1966)CrossRefGoogle Scholar
  12. 12.
    N.F. Mott, Conduction in Non-Crystalline Materials, 2nd edn. (Clarendon Press, Oxford, 1993)Google Scholar
  13. 13.
    R.M. Hill, Philos. Mag. 23, 59 (1971)CrossRefGoogle Scholar
  14. 14.
    W.F. Brown, Dielectrics (Springer, Berlin, 1956)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • V. Iyevlev
    • 1
  • A. Kostyuchenko
    • 1
  • M. Sumets
    • 2
  • V. Vakhtel
    • 1
  1. 1.Voronezh State UniversityVoronezhRussia
  2. 2.Voronezh State Architectural UniversityVoronezhRussia

Personalised recommendations