Shear strength of the Zn–Sn high-temperature lead-free solders

  • R. Mahmudi
  • M. Eslami


This study examines the shear strength behavior of the high-temperature Zn–20 wt% Sn, Zn–30 wt% Sn, and Zn–40 wt% Sn solders in the temperature range of 298–425 K. The results showed that increasing the Sn content of the alloys decreases both shear yield stress (SYS) and ultimate shear strength (USS) at all test temperatures. This can be attributed to the higher volume fraction of the softer β-Sn matrix and the eutectic α-Zn + β-Sn structure, which replaces the colonies of the harder α-Zn phase in the microstructure. The high shear strength of these high temperature solder alloys makes them suitable for application in harsh environments.


Shear Strength Solder Alloy Eutectic Structure Shear Yield Stress High Shear Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A.R. Geranmayeh, R. Mahmudi, J. Elec. Mater 34, 1002–1009 (2005)CrossRefGoogle Scholar
  2. 2.
    R. Mahmudi, A.R. Geranmayeh, M. Bakherad, M. Allami, Mater. Sci. Eng. A 457, 173–179 (2007)CrossRefGoogle Scholar
  3. 3.
    K. Suganuma, Curr. Opin. Solid State Mater. Sci 5, 55–64 (2001)CrossRefGoogle Scholar
  4. 4.
    K.S. Kim, S.H. Huh, K. Suganuma, Microelectron. Reliab 43, 259–267 (2003)CrossRefGoogle Scholar
  5. 5.
    L.S. Kim, C.H. Yu, N.H. Kim, N.K. Kim, H.J. Chang, E.G. Chang, Microelectron. Reliab 43, 757–763 (2003)CrossRefGoogle Scholar
  6. 6.
    K. Suganuma, Japan patent 2004-237375 (26 Aug 2004)Google Scholar
  7. 7.
    J.E. Lee, K.S. Kim, K. Suganuma, M. Inoue, G. Izuta, Mater. Trans 48, 584–593 (2007)CrossRefGoogle Scholar
  8. 8.
    S. Kim, K.S. Kim, S.S. Kim, K. Suganuma, J. Electron. Mater 38, 266–272 (2009)CrossRefGoogle Scholar
  9. 9.
    S. Kim, K.S. Kim, K. Suganuma, G. Izuta, J. Electron. Mater 38, 873–883 (2009)CrossRefGoogle Scholar
  10. 10.
    K. Suganuma, S.J. Kim, K.S. Kim, JOM 61(1), 64–71 (2009)CrossRefGoogle Scholar
  11. 11.
    J.E. Lee, K.S. Kim, K. Suganuma, J. Takenaka, K. Hagio, Mater. Trans 46, 2413–2418 (2005)CrossRefGoogle Scholar
  12. 12.
    T. Takahashi, S. Komatsu, H. Nishikawa, T. Takemoto, J. Electron. Mater 39, 1241–1247 (2010)CrossRefGoogle Scholar
  13. 13.
    R. Mahmudi, M. Eslami, J. Electron. Mater 39, 2495–2502 (2010)CrossRefGoogle Scholar
  14. 14.
    R.K. Guduru, K.A. Darling, R. Kishore, R.O. Scattergood, C.C. Koch, K.L. Murty, Mater. Sci. Eng. A 395, 307–314 (2005)CrossRefGoogle Scholar
  15. 15.
    R.K. Guduru, A.V. Nagasekhar, R.O. Scattergood, C.C. Koch, K.L. Murty, Metall. Mater. Trans 37A, 1477–1483 (2006)CrossRefGoogle Scholar
  16. 16.
    B. Kondori, R. Mahmudi, Mater. Sci. Eng. A 527, 2014–2021 (2010)CrossRefGoogle Scholar
  17. 17.
    R. Alizadeh, R. Mahmudi, Mater. Sci. Eng. A 527, 5312–5317 (2010)CrossRefGoogle Scholar
  18. 18.
    R. Alizadeh, R. Mahmudi, Mater. Sci. Eng. A 527, 3975–3983 (2010)CrossRefGoogle Scholar
  19. 19.
    G. Nayyeri, R. Mahmudi, F. Salehi, Mater. Sci. Eng. A 527, 5353–5359 (2010)CrossRefGoogle Scholar
  20. 20.
    M. Kangooie, R. Mahmudi, A.R. Geranmayeh, J. Electron. Mater 39, 215–222 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.School of Metallurgical and Materials EngineeringUniversity of TehranTehranIran

Personalised recommendations