Preparation of zinc oxide nanorods by microwave assisted technique using ethylene glycol as a stabilizing agent

  • L. A. Ghule
  • B. S. Shirke
  • K. B. Sapnar
  • S. D. Dhole
  • P. P. Hankare
  • K. M. Garadkar


Zinc oxide nanorods have been synthesized by microwave assisted method using zinc nitrate, ethylene glycol and sodium hydroxide as a precursors. The material was characterized by XRD, SEM, EDAX and UV–Visible techniques. XRD analysis revealed all the relevant Bragg’s reflections for wurtzite (hexagonal phase) structure of zinc oxide. The average particle size was obtained 34 nm from the Williamson–Hall plot. The value of particle size determined from XRD was in good agreement with the SEM and TEM results. The direct optical band gap was found to be 3.13 eV.


Zinc Nitrate Microwave Assisted Method Zinc Oxide Nanorods Hall Plot Surface Acoustic Wave Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



One of the authors (KMG) thankful to UGC for the financial support under the Major Research Project [F.: 35- 337/09 (SR)]. Authors are thankful to Director, UGC-DAE, Indore for providing the TEM facility.


  1. 1.
    R. Baron, F.W. Campbell, I. Streeter, L. Xiao, R.G. Compton, Int. J. Electrochem. Sci. 3, 556 (2008)Google Scholar
  2. 2.
    A. Bayandori Moghaddam, M. Kazemzad, M.R. Nabid, H.H. Dabaghi, Int. J. Electrochem. Sci. 3, 291 (2008)Google Scholar
  3. 3.
    D.J. Milliron, S.M. Hughes, Y. Cui, L. Manna, J. Li, L.-W. Wang, A.P. Alivisatos, Nature 430, 190 (2004)CrossRefGoogle Scholar
  4. 4.
    D.C. Look, Mater. Sci. Eng. B 80, 383 (2001)CrossRefGoogle Scholar
  5. 5.
    C.M. Lieber, Solid State Commun. 66, 5309 (1998)Google Scholar
  6. 6.
    Y. Zhang, K. Suenaga, C. Collies, S. Iijima, Science 281, 973 (1998)CrossRefGoogle Scholar
  7. 7.
    L. Vayssieres, K. Keis, A. Hagfeldt, S.-E. Lindquist, Chem. Mater. 13, 4395 (2001)CrossRefGoogle Scholar
  8. 8.
    Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 292, 1947 (2001)CrossRefGoogle Scholar
  9. 9.
    J.A. Rodriguez, T. Jirsak, J. Dvorak, S. Sambasivan, D.J. Fischer, J. Phys. Chem. B 104, 319 (2000)CrossRefGoogle Scholar
  10. 10.
    W.-C. Shin, M.S. Wu, J. Cryst. Growth 137, 319 (1994)CrossRefGoogle Scholar
  11. 11.
    H.M. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P.D. Yang, Science 292, 1897 (2001)CrossRefGoogle Scholar
  12. 12.
    N.T. Hung, N.D. Quang, S. Bernik, J. Mater. Res. 16, 2817 (2001)CrossRefGoogle Scholar
  13. 13.
    N.F. Cooray, K. Kushiya, A. Fujimaki, D. Okumura, M. Sato, M. Ooshita, O. Yamase, Jpn. J. Appl. Phys. 38, 6213 (1999)CrossRefGoogle Scholar
  14. 14.
    R. Paneva, D. Gotchev, Sens. Actuat. A: Phys. 72, 79 (1999)CrossRefGoogle Scholar
  15. 15.
    E. Topoglidis, A.E.G. Cass, B. Oregan, J.R. Durrant, J. Electroanal. Chem. 517, 20 (2001)CrossRefGoogle Scholar
  16. 16.
    L. Gao, Q. Li, W.L. Luan, J. Am. Ceram. Soc. 85, 1016 (2002)CrossRefGoogle Scholar
  17. 17.
    C.X. Xu, X.W. Sun, Appl. Phys. Lett. 83, 3806 (2003)CrossRefGoogle Scholar
  18. 18.
    P.X. Gao, Y. Ding, W. Mai, W.L. Hughes, C.S. Lao, Z.L. Wang, Science 309, 1700 (2005)CrossRefGoogle Scholar
  19. 19.
    R.J. Lanf, W.D. Bond, Am. Ceram. Soc. Bull. 63, 278 (1984)Google Scholar
  20. 20.
    B.S.Shirke, A.A. Patil, P.P.Hankare, K.M.Garadkar, J. Mater. Sci. Mater. Electron. doi:  10.1007/s10854-010-0114-y
  21. 21.
    E. Ivers-Tiffee, K. Seitz, Am. Ceram. Soc. Bull. 66, 1384 (1987)Google Scholar
  22. 22.
    J.S. Jie, G.Z. Wang, Q.T. Wang, Y.M. Chen, X.H. Han, P. Wang, J.G. Hou, J. Phys. Chem. B. 108, 11976 (2004)CrossRefGoogle Scholar
  23. 23.
    N.Y. Lee, M.S. Kim, J. Mater. Sci. 26, 1126 (1991)Google Scholar
  24. 24.
    S.M. Haile, D.W. Johnson, G.H. Wiseman, J. Am. Ceram. Soc. 72, 2004 (1989)CrossRefGoogle Scholar
  25. 25.
    W.J. Li, E.W. Shi, W.Z. Zhong, Z. Yin, J. Cryst. Growth 203, 186 (1999)CrossRefGoogle Scholar
  26. 26.
    B.G. Wang, E.W. Shi, W.Z. Zhong, Cryst. Res. Technol. 33, 937 (1998)CrossRefGoogle Scholar
  27. 27.
    C.H. Lu, C.H. Yeh, Ceram. Int. 26, 351 (2000)CrossRefGoogle Scholar
  28. 28.
    M.C. Neves, T. Trindade, A.M.B. Timmons, J.D. Pedrosa de Jesus, Mater. Res. Bull. 36, 1099 (2001)CrossRefGoogle Scholar
  29. 29.
    J.Q. Hu, Q. Li, N.B. Wong, C.S. Lee, S.T. Lee, Chem. Mater. 14, 1216 (2002)CrossRefGoogle Scholar
  30. 30.
    Y. Sun, G.M. Fuge, N.A. Fox, D.J. Riley, M.N.R. Ashfold, Adv. Mater. 17, 2477 (2005)CrossRefGoogle Scholar
  31. 31.
    Z. Gui, J. Liu, Z.Z. Wang, L. Song, Y. Hu, W.C. Fan, D.Y. Chen, J. Phys. Chem. B 109, 1113 (2005)CrossRefGoogle Scholar
  32. 32.
    Y.H. Ni, X.W. Wei, X. Ma and J.M. Hong. J. Cryst. Growth 283:48 (2005). Compounds. 77: 491 (2010)Google Scholar
  33. 33.
    F. Gu, S.F. wang, M.K. Lu, G.J. Zhou, D. Xu, D.R. Langmuir, J. Sci. I.R.Iran 20, 3528 (2004)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • L. A. Ghule
    • 1
  • B. S. Shirke
    • 1
  • K. B. Sapnar
    • 2
  • S. D. Dhole
    • 2
  • P. P. Hankare
    • 1
  • K. M. Garadkar
    • 1
  1. 1.Nanomaterials Research Laboratory, Department of ChemistryShivaji UniversityKolhapurIndia
  2. 2.Microtron Accelerator Laboratory, Department of PhysicsUniversity of PunePuneIndia

Personalised recommendations