Advertisement

Characterization of Tin disulphide thin films prepared at different substrate temperature using spray pyrolysis technique

  • K. Vijayakumar
  • C. Sanjeeviraja
  • M. Jayachandran
  • L. Amalraj
Article

Abstract

Thin films of tin disulphide on glass substrates were prepared by spray pyrolysis technique using precursor solutions of SnCl2·2H2O and n–n dimethyl thiourea at different substrate temperatures varied in the range 348–423 K. Using the hot probe technique the type of conductivity is found to be n type. X ray diffraction analysis revealed the polycrystalline nature with increasing crystallinity with respect to substrate temperature. The preferential orientation growth of SnS2 compound having hexagonal structure along (002) plane increased with the substrate temperature. The size of the tin disulphide crystallites with nano dimension were determined using the Full Width Half Maximum values of the Bragg peaks and found to increase with the substrate temperature. The surface morphology had been observed on the surface of these films using scanning electron microscope. The optical absorption and transmittance spectra have been recorded for these films in the wavelength range 400–800 nm. Thickness of these films was found using surface roughness profilometer. The absorption coefficient (α) was determined for all the films. Direct band gap values were found to exist in all the films deposited at different substrate temperatures. The value of room temperature resistivity in dark decreased from 5.95 × 103 Ω cm for the amorphous film deposited at low temperature (348 K) to 2.22 × 103 Ω cm for the polycrystalline film deposited at high temperature (423 K) whereas the resistivity values in light decreased from 1.48 × 103 to 0.55 × 103 Ω cm respectively, which is determined using the four probe method. Activation energy of these thin films was determined by Arrhenius plot.

Keywords

Substrate Temperature Spray Pyrolysis Thin Film Solar Cell SnS2 Spray Pyrolysis Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R. Suryanarayanan, Physica Status Solidi B 85, 9 (1978)CrossRefGoogle Scholar
  2. 2.
    K. Rajeshwar, Appl. Electrochem. 15, 1 (1985)CrossRefGoogle Scholar
  3. 3.
    R.D. Engelken, H.E. Mc Cloud, C. Lee, M. Slayton, J. Electrochem. Soc. 134, 2696 (1987)CrossRefGoogle Scholar
  4. 4.
    H. Noguchi, A. Setiyadi, H. Tanamura, T. Nagamoto, O. Omoto, Sol. Energy Mater. Sol. Cells 35, 325 (1994)CrossRefGoogle Scholar
  5. 5.
    M. Ristov, G. Sinadinovski, I. Grozdanor, Thin Solid Films 173, 53 (1989)CrossRefGoogle Scholar
  6. 6.
    M.T.S. Nair, P.K. Nair, Semicond. Sci. Technol. 6, 132 (1991)CrossRefGoogle Scholar
  7. 7.
    C.D. Lokhande, J. Phys. D Appl. Phys. 23, 1703 (1990)CrossRefGoogle Scholar
  8. 8.
    D.L. Greenway, R. Nitsche, J. Phys. Chem. Solids 26, 1445 (1965)CrossRefGoogle Scholar
  9. 9.
    P.A. Lee, G. Said, R. Davis, T.H. Lim, J. Phys. Chem. Solids 30, 2719 (1969)CrossRefGoogle Scholar
  10. 10.
    S. Acharya, O.N. Srinivasa, Physica Status Solidi A 56, K1 (1979)Google Scholar
  11. 11.
    T. Shibata, T. Miura, T. Kishi, T. Nagai, J. Cryst. Growth 106, 593 (1990)CrossRefGoogle Scholar
  12. 12.
    G. Domingo, R.S. Itoga, C.R. Kannewurf, Phys. Rev. 143, 536 (1996)CrossRefGoogle Scholar
  13. 13.
    S.G. Patil, R.H. Tredgold, J. Phys. D Appl. Phys. 4, 718 (1971)CrossRefGoogle Scholar
  14. 14.
    R. Nakata, M. Yamaguchi, S. Zembutsu, M. Sumita, J. Phys. Soc. Japan 32, 1153 (1972)CrossRefGoogle Scholar
  15. 15.
    D.G. Mead, J.C. Irwin, Solid State Commn. 20, 885 (1976)CrossRefGoogle Scholar
  16. 16.
    G. Said, P.A. Lee, Physica Status Solidi A 15, 99 (1973)CrossRefGoogle Scholar
  17. 17.
    M.J. Powell, J. Phys. C Solid State Phys. 10, 2967 (1977)CrossRefGoogle Scholar
  18. 18.
    J.H. Shephard, P.M. Williams, J. Phys. C Solid State Phys. 7, 4416 (1974)CrossRefGoogle Scholar
  19. 19.
    M.Y. Au-Yang, M.L. Cohen, Phys. Rev. 178, 1279 (1969)CrossRefGoogle Scholar
  20. 20.
    L. Amalraj, C. Sanjeeviraja, M. Jayachandran, Cryst. Growth 234, 683 (2002)CrossRefGoogle Scholar
  21. 21.
    B. Thangaraju, P. Kaliannan, J. Phys. D Appl. Phys. 33, 1054 (2000)CrossRefGoogle Scholar
  22. 22.
    J. George, K.S. Joseph, J. Phys. D Appl. Phys. 15, 1109 (1982)CrossRefGoogle Scholar
  23. 23.
    S.K. Panda, A. Antonakos, Mat. Res. Bull. 42, 576 (2007)CrossRefGoogle Scholar
  24. 24.
    N.G. Deshpande, A.A. Sagade, Y.G. Gudage, C.D. Lokhande, J. Alloy Compd. 436, 421 (2007)CrossRefGoogle Scholar
  25. 25.
    B.R. Sankapal, R.S. Mane, C.D. Lokhande, Mater. Res. Bull. 35, 2027 (2000)CrossRefGoogle Scholar
  26. 26.
    L.S. Price, I.P. Parkin, A.M.E. Hardy, R.J.H. Clark, Chem. Mater. 11, 1792 (1999)CrossRefGoogle Scholar
  27. 27.
    K. Kawano, R. Nakata, M. Sumita, J. Phys. D Appl. Phys. 22, 136 (1989)CrossRefGoogle Scholar
  28. 28.
    P. Pramanik, P.K. Basu, S. Biswas, Thin Solid Films 150, 269 (1987)CrossRefGoogle Scholar
  29. 29.
    N.K. Reddy, K.T.R. Reddy, Thin Solid Films 325, 4 (1998)CrossRefGoogle Scholar
  30. 30.
    J. George, K.S. Joseph, J. Phys. D Appl. Phys. 15, 1109 (1982)CrossRefGoogle Scholar
  31. 31.
    K. Matsumoto, K. Tagaki, J. Cryst. Growth 63, 202 (1983)CrossRefGoogle Scholar
  32. 32.
    S.C. Roy, M.K. Karanjai, Thin Solid Films 350, 72 (1999)CrossRefGoogle Scholar
  33. 33.
    B. Hai, K. Tang, C. Wang, J. Cryst. Growth 225, 92 (2001)CrossRefGoogle Scholar
  34. 34.
    B.G. Jeyaprakash, R. Ashok kumar, K. Kesavan, A. Amalarani, J. Am. Sci. 6, 22 (2010)Google Scholar
  35. 35.
    B. Thangaraju, P. Kaliannan, Cryst. Res. Technol. 35, 71 (2000)CrossRefGoogle Scholar
  36. 36.
    S. Mandalidis, J.A. Kalomiros, K. Kambas, J. Mat. Sci. 31, 5975 (1996)CrossRefGoogle Scholar
  37. 37.
    X ray Powder Diffraction JCPDS file reference no. 21—1231Google Scholar
  38. 38.
    A. Ortiz, A. Sanchez-juarez, J. Elec. Chem. Soc. 147, 3708 (2000)CrossRefGoogle Scholar
  39. 39.
    P.H. Klug, L.E. Alexander, X-Ray Diff. Procedures (Wiley, New York, 1954)Google Scholar
  40. 40.
    R.N. Panda, M.F. Hsieh, R.J. Chung, T.S. Chin, J. Phys. Chem. Solids 64, 193–199 (2003)Google Scholar
  41. 41.
    J. Bardeen, F.J. Blatt, L.H. Hall, in Proceedings of the Photoconductivity Conference, Atlantic city (Wiley, New York, 1956) p. 146Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • K. Vijayakumar
    • 1
  • C. Sanjeeviraja
    • 2
  • M. Jayachandran
    • 3
  • L. Amalraj
    • 4
  1. 1.Department of PhysicsK.L.N. College of Information TechnologyMaduraiIndia
  2. 2.Department of PhysicsAlagappa UniversityKaraikudiIndia
  3. 3.ECMS DivisionCentral Electrochemical Research InstituteKaraikudiIndia
  4. 4.Department of PhysicsV.H.N.S.N. CollegeVirudhunagarIndia

Personalised recommendations