The change in the electrical transport mechanism from the grain boundary conduction to the nearest-neighbor hopping conduction in SnO2

  • A. Yildiz
  • A. A. Alsaç
  • T. Serin
  • N. Serin


The electrical conductivity measurements on SnO2 over a wide range of temperatures were performed. The results provided experimental evidence for a transition from the grain boundary (GB) conduction at high temperatures to the nearest-neighbor hopping (NNH) conduction at low temperatures. In the light of employed conduction models, characteristic parameters describing the electrical transport in SnO2, such as the grain barrier height and donor concentration were determined. Atomic force microscopy (AFM) and X-ray diffraction (XRD) measurements of SnO2 were also presented.


Atomic Force Microscopy SnO2 Root Mean Square Grain Boundary Conduction Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the State of Planning Organization of Turkey under Grant No. 2001K120590 and the Ankara University BAP under Project Number 2007-07-45-054. We would also like to thank Prof. Dr. Yusuf Kağan Kadıoğlu and Ms. Murat Yavuz for providing XRD and AFM measurements.


  1. 1.
    G. Zhang, M. Liu, Sens. Actuators B: Chem. 69, 144 (2000)CrossRefGoogle Scholar
  2. 2.
    N. Barsan, U. Weimar, J. Phys.: Condens. Matter 15, R813 (2003)CrossRefGoogle Scholar
  3. 3.
    J.Y.W. Seto, J. Appl. Phys. 46, 5247 (1975)CrossRefGoogle Scholar
  4. 4.
    J.W. Orton, M.J. Powel, Rep. Prog. Phys. 43, 1263 (1980)CrossRefGoogle Scholar
  5. 5.
    A.J.C. Lanfredi, R.R. Geraldes, O.M. Berengue, E.R. Leite, A.J. Chiquito, J. Appl. Phys. 105, 023708 (2009)CrossRefGoogle Scholar
  6. 6.
    A. Yildiz, S.B. Lisesivdin, M. Kasap, D. Mardare, J. Non-Cryst. Solids 354, 4944 (2008)CrossRefGoogle Scholar
  7. 7.
    T. Serin, A. Yildiz, N. Serin, N. Yıldırım, F. Özyurt, M. Kasap, J. Electron. Mater. 39, 1152 (2010)CrossRefGoogle Scholar
  8. 8.
    N.F. Mott, E.A. Davis, Electronic Process in Non-Crystalline Materials (Clarendon, Oxford, 1979)Google Scholar
  9. 9.
    R. Swanepoel, J. Phys. E Sci. Instrum. 16, 1214 (1983)CrossRefGoogle Scholar
  10. 10.
    JCPDS Card no 41-1445 (Tetragonal SnO2)Google Scholar
  11. 11.
    B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley, Reading, MA, 1978)Google Scholar
  12. 12.
    T.J. Coutts, D.L. Young, X. Li, MRS Bull. 25, 58 (2000)CrossRefGoogle Scholar
  13. 13.
    R. Summit, J. Appl. Phys. 39, 3762 (1968)CrossRefGoogle Scholar
  14. 14.
    A. Yildiz, N. Serin, M. Kasap, T. Serin, D. Mardare, J. Alloy. Comp. 493, 227 (2010)CrossRefGoogle Scholar
  15. 15.
    A. Yildiz, N. Serin, T. Serin, M. Kasap, Jpn. J. Appl. Phys. 48, 111203 (2009)CrossRefGoogle Scholar
  16. 16.
    R.A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, Cambridge, 1991)CrossRefGoogle Scholar
  17. 17.
    B.I. Shklovskii, Sov. Phys. Semicond. 6, 1053 (1973)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Science and ArtsAhi Evran UniversityKirsehirTurkey
  2. 2.Department of Engineering Physics, Faculty of EngineeringAnkara UniversityAnkaraTurkey

Personalised recommendations