The effect of CuO doping on the microstructures and dielectric properties of BaTiO3 ceramics

  • Tao Li
  • Kun Yang
  • Renzhong Xue
  • Yuncai Xue
  • Zhenping Chen


(1 − x) BaTiO3/xCuO ceramic pellets with x = 0, 0.2, 0.4, 0.6, and 0.8% respectively were prepared by the traditional solid-state reaction method. The effect of CuO doping on the microstructure and dielectric properties of BaTiO3 ceramics has been investigated. SEM and XRD results at room temperature show that the grain size grows with the increase of CuO content under the same sintering conditions and the crystal structure undergoes the mixed phases (pseudocubic/tetragonal) to tetragonal phase transition with the growth of grain size. Regular shape grains with average grain size ~2 μm are detectable in the specimens as CuO dopant content adds up to 0.8% and the crystal structure has completely changed into tetragonal phase. The permittivity increases markedly for CuO dopant content x = 0.2 ~ 0.4% and the dielectric loss decreases significantly after being doped by CuO and down to a minimum value for x = 0.8%. In addition, the permittivity and dielectric loss display a good stability in a broad frequency range comparing that of pure BaTiO3 ceramics.


Dielectric Property Dielectric Loss BaTiO3 Broad Frequency Range BaTiO3 Ceramic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by National Natural Science Foundation of China (Project No. 10875107), The Natural Science Foundation of Henan (Project No. 82300440080), The Basic Research Plan on Natural Science of the Education Department of Henan Province (Grant No. 2008A140014) and (Grant No. 2010B140016).


  1. 1.
    G.V. Lewis, C.R.A. Catlow, J. Casselton, J. Am. Ceram. Soc. 68, 555–561 (1985)CrossRefGoogle Scholar
  2. 2.
    J.H. Han, D.Y. Kim, Acta Mater. 46, 2021–2028 (1998)CrossRefGoogle Scholar
  3. 3.
    W.S. Cho, J. Phys. Chem. Solids 59, 659–666 (1998)CrossRefGoogle Scholar
  4. 4.
    F.J. Gotor, L.A. Perez-Maqueda, J.M. Criado, J. Eur. Ceram. Soc. 23, 505–512 (2003)CrossRefGoogle Scholar
  5. 5.
    Y. Liu, A.R. West, J. Eur. Ceram. Soc. 29, 3249–3257 (2009)CrossRefGoogle Scholar
  6. 6.
    A. Shukla, R.N.P. Choudhary, A.K. Thakur, D.K. Pradhan, Physica B 405, 99–106 (2010)CrossRefGoogle Scholar
  7. 7.
    R. Köerstein, L. Jäer, M. Zenkner, S.G. Ebbinghaus, Mater. Chem. Phys. 119, 118–122 (2010)CrossRefGoogle Scholar
  8. 8.
    H.-P. Jeon, S.-K. Lee, S.-W. Kim, D.-K. Choi, Mater. Chem. Phys 94, 185–189 (2005)CrossRefGoogle Scholar
  9. 9.
    G. Liu, R.D. Roseman, J. Mater. Sci. 34, 4439–4445 (1999)CrossRefGoogle Scholar
  10. 10.
    F.-C. Yang, Ceram. Int 24, 341–346 (1998)CrossRefGoogle Scholar
  11. 11.
    Y.C. Lee, W. Lu, S.H. Wang, C.H.W. Lin, Int. J. Miner. Metall. Mater. 16, 124–127 (2009)CrossRefGoogle Scholar
  12. 12.
    S. Derling, Th. Müller, H.-P. Abicht, K.-H. Felgner, H.T. Langhammer, J. Mater. Sci. 36, 1425–1431 (2001)CrossRefGoogle Scholar
  13. 13.
    C.-Y. Chen, W.-H. Tuan, J. Am. Ceram. Soc. 83, 2988–2992 (2000)CrossRefGoogle Scholar
  14. 14.
    W. Luan, L. Gao, J. Guo, Ceram. Int 25, 727–729 (1999)CrossRefGoogle Scholar
  15. 15.
    T.T. Fang, H.L. Hsieh, F.S. Shiau, J. Am. Ceram. Soc. 76, 1205–1211 (1993)CrossRefGoogle Scholar
  16. 16.
    M.H. Frey, D.A. Payne, Phys. Rev. B 54, 3158–3168 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Tao Li
    • 1
  • Kun Yang
    • 1
  • Renzhong Xue
    • 1
  • Yuncai Xue
    • 1
  • Zhenping Chen
    • 1
  1. 1.Department of Technology and PhysicsZhengzhou University of Light IndustryZhengzhouPeople’s Republic of China

Personalised recommendations