Advertisement

Effects of different kinds of seed layers and heat treatment on adhesion characteristics of Cu/(Cr or Ni–Cr)/PI interfaces in flexible printed circuits

  • Bo-In Noh
  • Jeong-Won Yoon
  • Bo-Young Lee
  • Seung-Boo Jung
Article

Abstract

In this study, the effect of various seed layers (95Ni–5Cr, 80Ni–20Cr and Cr) on the adhesion strength of flexible copper clad laminate (FCCL), which was manufactured by the roll-to-roll process, was evaluated after heat treatment. The changes in the morphology, chemical bonding, and adhesion properties were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and a 90° peel test. The results showed that both the peel strength and thermal resistance of the FCCL increased as the Cr ratio of the seed layer increased. The roughness of the fracture surface decreased as the heat treatment temperature and holding time increased. The heat treatment of the FCCL increased the proportion of C–N bonds and reduced that of the C–O and carbonyl (C=O) bonds in the polyimide. The chemical function and roughness of the fracture surface were affected by the composition and ratio of the seed layer. Therefore, the adhesion strength between the metal and polyimide was mostly attributed to the chemical interaction between the metal layer and the functional groups of the polyimide.

Keywords

Polyimide Adhesion Strength Seed Layer Peel Test Polyimide Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The present work was carried out with the support of a Next Generation New Technology Development Program (Project No. 10030049) of the Korea Ministry of Commerce, Industry and Energy (MOCIE).

References

  1. 1.
    F. Barlow, A. Lostetter, A. Elshabini, Microelectron. Reliab. 42, 1091 (2002)CrossRefGoogle Scholar
  2. 2.
    S. Kamiya, H. Furuta, M. Omiya, Surf. Coat. Technol. 202, 1084 (2007)CrossRefGoogle Scholar
  3. 3.
    I.H. Kazi, P.M. Wild, T.N. Moore, M. Sayer, Thin Solid Films 515, 2602 (2006)CrossRefGoogle Scholar
  4. 4.
    F. Faupel, C.H. Yang, S.T. Chen, P.S. Ho, J. Appl. Phys. 65, 911 (1989)CrossRefGoogle Scholar
  5. 5.
    Y. Nakamura, Y. Suzuki, Y. Watanabe, Thin Solid Films 290–291, 367 (1996)CrossRefGoogle Scholar
  6. 6.
    S.P. Lacour, J. Jones, S. Wagner, T. Li, Z. Suo, Proc. IEEE 93, 9966 (2005)CrossRefGoogle Scholar
  7. 7.
    E. Liston, L. Martinu, M. Wertheimer, J. Adhes. Sci. Technol. 7, 1091 (1993)CrossRefGoogle Scholar
  8. 8.
    N.J. Chou, C.H. Tang, J. Vac. Sci. Technol. A 2, 751 (1984)CrossRefGoogle Scholar
  9. 9.
    J.Y. Song, J. Yu, Acta Mater. 50, 3985 (2002)CrossRefGoogle Scholar
  10. 10.
    S.H. Kim, S.W. Na, N.E. Lee, Y.W. Nam, Y.H. Kim, Surf. Coat. Technol. 200, 2072 (2005)CrossRefGoogle Scholar
  11. 11.
    Y.B. Park, I.S. Park, J. Yu, Mater. Sci. Eng. A 266, 261 (1999)CrossRefGoogle Scholar
  12. 12.
    T. Miyamura, J. Koike, Mater. Sci. Eng. A. 445–446, 620 (2007)Google Scholar
  13. 13.
    L.P. Buchwalter, K. Holloway, J. Adhes. Sci. Technol. 12, 95 (1998)CrossRefGoogle Scholar
  14. 14.
    E.C. Ahn, J. Yu, I.S. Park, J. Mater. Sci. 35, 1949 (2000)CrossRefGoogle Scholar
  15. 15.
    J.L. Jordan, P.N. Sanda, J.F. Morar, C.A. Kovac, F.J. Himpsel, R.A. Pollak, J. Vac. Sci. Technol. A 4, 1046 (1986)CrossRefGoogle Scholar
  16. 16.
    J.S. Eom, S.H. Kim, Thin Solid Films 516, 4530 (2008)CrossRefGoogle Scholar
  17. 17.
    R. Haight, R.C. White, B.D. Silverman, P.S. Ho, J. Vac. Sci. Technol. A 6, 2188 (1988)CrossRefGoogle Scholar
  18. 18.
    N.J. Chou, D.W. Dong, J. Kim, A.C. Liu, J. Electrochem. Soc. 131, 2335 (1984)CrossRefGoogle Scholar
  19. 19.
    M.I. Birjega, C.A. Constantin, I.T. Florescu, C. Sarbu, Thin Solid Films 92, 315 (1982)CrossRefGoogle Scholar
  20. 20.
    S. Schiller, U. Heisig, K. Goedicke, H. Bilz, Thin Solid Films 119, 211 (1984)CrossRefGoogle Scholar
  21. 21.
    B.I. Noh, S.B. Jung, J. Electron. Mater. 38, 46 (2009)CrossRefGoogle Scholar
  22. 22.
    B.I. Noh, J.W. Yoon, B.Y. Lee, S.B. Jung, J. Mater. Sci. Mater. Electron. 20, 885 (2009)CrossRefGoogle Scholar
  23. 23.
    B.I. Noh, J.W. Yoon, J.H. Choi, S.B. Jung, Mater. Trans. 51, 85 (2010)CrossRefGoogle Scholar
  24. 24.
    I.S. Park, J. Yu, Acta Mater. 46, 2947 (1998)CrossRefGoogle Scholar
  25. 25.
    J. Burkstrand, J. Vac. Sci. Technol. 16, 1072 (1979)CrossRefGoogle Scholar
  26. 26.
    S. Iwamori, T. Miyashita, S. Fukuda, S. Nozaki, N. Fukuda, K. Sudoh, J. Adhesion 63, 309 (1997)CrossRefGoogle Scholar
  27. 27.
    D.Y. Shih, N. Klymoko, R. Flitsch, J. Paraszezak, S. Nunes, J. Vac. Sci. Technol. A 9, 2963 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Bo-In Noh
    • 1
  • Jeong-Won Yoon
    • 1
  • Bo-Young Lee
    • 2
  • Seung-Boo Jung
    • 1
  1. 1.School of Advanced Materials Science and EngineeringSungkyunkwan UniversityJangan-gu, SuwonRepublic of Korea
  2. 2.School of Aerospace and Mechanical EngineeringKorea Aerospace UniversityHwajeon-dong, Deogyang-gu, GoyangRepublic of Korea

Personalised recommendations