Skip to main content
Log in

Effects of different kinds of seed layers and heat treatment on adhesion characteristics of Cu/(Cr or Ni–Cr)/PI interfaces in flexible printed circuits

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the effect of various seed layers (95Ni–5Cr, 80Ni–20Cr and Cr) on the adhesion strength of flexible copper clad laminate (FCCL), which was manufactured by the roll-to-roll process, was evaluated after heat treatment. The changes in the morphology, chemical bonding, and adhesion properties were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and a 90° peel test. The results showed that both the peel strength and thermal resistance of the FCCL increased as the Cr ratio of the seed layer increased. The roughness of the fracture surface decreased as the heat treatment temperature and holding time increased. The heat treatment of the FCCL increased the proportion of C–N bonds and reduced that of the C–O and carbonyl (C=O) bonds in the polyimide. The chemical function and roughness of the fracture surface were affected by the composition and ratio of the seed layer. Therefore, the adhesion strength between the metal and polyimide was mostly attributed to the chemical interaction between the metal layer and the functional groups of the polyimide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Barlow, A. Lostetter, A. Elshabini, Microelectron. Reliab. 42, 1091 (2002)

    Article  Google Scholar 

  2. S. Kamiya, H. Furuta, M. Omiya, Surf. Coat. Technol. 202, 1084 (2007)

    Article  CAS  Google Scholar 

  3. I.H. Kazi, P.M. Wild, T.N. Moore, M. Sayer, Thin Solid Films 515, 2602 (2006)

    Article  CAS  Google Scholar 

  4. F. Faupel, C.H. Yang, S.T. Chen, P.S. Ho, J. Appl. Phys. 65, 911 (1989)

    Article  Google Scholar 

  5. Y. Nakamura, Y. Suzuki, Y. Watanabe, Thin Solid Films 290–291, 367 (1996)

    Article  Google Scholar 

  6. S.P. Lacour, J. Jones, S. Wagner, T. Li, Z. Suo, Proc. IEEE 93, 9966 (2005)

    Article  Google Scholar 

  7. E. Liston, L. Martinu, M. Wertheimer, J. Adhes. Sci. Technol. 7, 1091 (1993)

    Article  CAS  Google Scholar 

  8. N.J. Chou, C.H. Tang, J. Vac. Sci. Technol. A 2, 751 (1984)

    Article  CAS  Google Scholar 

  9. J.Y. Song, J. Yu, Acta Mater. 50, 3985 (2002)

    Article  CAS  Google Scholar 

  10. S.H. Kim, S.W. Na, N.E. Lee, Y.W. Nam, Y.H. Kim, Surf. Coat. Technol. 200, 2072 (2005)

    Article  CAS  Google Scholar 

  11. Y.B. Park, I.S. Park, J. Yu, Mater. Sci. Eng. A 266, 261 (1999)

    Article  Google Scholar 

  12. T. Miyamura, J. Koike, Mater. Sci. Eng. A. 445–446, 620 (2007)

    Google Scholar 

  13. L.P. Buchwalter, K. Holloway, J. Adhes. Sci. Technol. 12, 95 (1998)

    Article  CAS  Google Scholar 

  14. E.C. Ahn, J. Yu, I.S. Park, J. Mater. Sci. 35, 1949 (2000)

    Article  CAS  Google Scholar 

  15. J.L. Jordan, P.N. Sanda, J.F. Morar, C.A. Kovac, F.J. Himpsel, R.A. Pollak, J. Vac. Sci. Technol. A 4, 1046 (1986)

    Article  CAS  Google Scholar 

  16. J.S. Eom, S.H. Kim, Thin Solid Films 516, 4530 (2008)

    Article  CAS  Google Scholar 

  17. R. Haight, R.C. White, B.D. Silverman, P.S. Ho, J. Vac. Sci. Technol. A 6, 2188 (1988)

    Article  CAS  Google Scholar 

  18. N.J. Chou, D.W. Dong, J. Kim, A.C. Liu, J. Electrochem. Soc. 131, 2335 (1984)

    Article  CAS  Google Scholar 

  19. M.I. Birjega, C.A. Constantin, I.T. Florescu, C. Sarbu, Thin Solid Films 92, 315 (1982)

    Article  CAS  Google Scholar 

  20. S. Schiller, U. Heisig, K. Goedicke, H. Bilz, Thin Solid Films 119, 211 (1984)

    Article  CAS  Google Scholar 

  21. B.I. Noh, S.B. Jung, J. Electron. Mater. 38, 46 (2009)

    Article  CAS  Google Scholar 

  22. B.I. Noh, J.W. Yoon, B.Y. Lee, S.B. Jung, J. Mater. Sci. Mater. Electron. 20, 885 (2009)

    Article  CAS  Google Scholar 

  23. B.I. Noh, J.W. Yoon, J.H. Choi, S.B. Jung, Mater. Trans. 51, 85 (2010)

    Article  CAS  Google Scholar 

  24. I.S. Park, J. Yu, Acta Mater. 46, 2947 (1998)

    Article  CAS  Google Scholar 

  25. J. Burkstrand, J. Vac. Sci. Technol. 16, 1072 (1979)

    Article  CAS  Google Scholar 

  26. S. Iwamori, T. Miyashita, S. Fukuda, S. Nozaki, N. Fukuda, K. Sudoh, J. Adhesion 63, 309 (1997)

    Article  CAS  Google Scholar 

  27. D.Y. Shih, N. Klymoko, R. Flitsch, J. Paraszezak, S. Nunes, J. Vac. Sci. Technol. A 9, 2963 (1991)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present work was carried out with the support of a Next Generation New Technology Development Program (Project No. 10030049) of the Korea Ministry of Commerce, Industry and Energy (MOCIE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-In Noh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noh, BI., Yoon, JW., Lee, BY. et al. Effects of different kinds of seed layers and heat treatment on adhesion characteristics of Cu/(Cr or Ni–Cr)/PI interfaces in flexible printed circuits. J Mater Sci: Mater Electron 22, 790–796 (2011). https://doi.org/10.1007/s10854-010-0213-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-010-0213-9

Keywords

Navigation