Skip to main content
Log in

Synthesis, structural and optical characterization of Ni-doped ZnO nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanocrystalline Zn1−x Ni x O (x = 0.00, 0.02, 0.04, 0.06, 0.08) powders were synthesized by a simple sol–gel autocombustion method using metal nitrates of zinc, nickel and glycine. Structural and optical properties of the Ni-doped ZnO samples annealed at 800 °C are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive analysis using X-rays (EDAX), UV–visible spectroscopy and photoluminescence (PL). X-ray diffraction analysis reveals that the Ni-doped ZnO crystallizes in a hexagonal wurtzite structure and secondary phase (NiO) was observed with the sensitivity of XRD measurement with the increasing nickel concentration (x ≥ 0.04). The lattice constants of Ni-doped ZnO nanoparticles increase slightly when Ni2+ is doped into ZnO lattice. The optical absorption band edge of the nickel doped samples was observed above 387 nm (3.20 eV) along with well-defined absorbance peaks at around 439 (2.82 eV), 615(2.01 eV) and 655 nm (1.89 eV). PL measurements of Ni-doped samples illustrated the strong UV emission band at ~3.02 eV, weak blue emission bands at 2.82 and 2.75 eV, and a strong green emission band at 2.26 eV. The observed red shift in the band gap from UV–visible analysis and near band edge UV emission with Ni doping may be considered to be related to the incorporation of Ni ions into the Zn site of the ZnO lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Miyake, H. Kominami, H. Tatsuoka, H. Kuwabara, Y. Nakaushi, Y. Hatanaka, J. Cryst. Growth 294, 214 (2000)

    Google Scholar 

  2. J. Hu, T.W. Odom, C.M. Lieber, Acc. Chem. Res. 32, 435 (1999)

    Article  CAS  Google Scholar 

  3. C.A. Mirkin, Science 286, 2095 (1999)

    Article  CAS  Google Scholar 

  4. S.M. Prokes, K.L. Wang, Mater. Res. Sci. Bull. 24, 13 (1999)

    CAS  Google Scholar 

  5. S. Nakamura, Science 281, 956 (1998)

    Article  CAS  Google Scholar 

  6. H. Ohno, Science 281, 951 (1998)

    Article  CAS  Google Scholar 

  7. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, H. Koinuma, Science 291, 854 (2001)

    Article  CAS  Google Scholar 

  8. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)

    Article  CAS  Google Scholar 

  9. M.A. Martinez, J. Herrero, M.T. Gutierrez, Sol. Energy Mater. Sol. Cells 45, 75 (1997)

    Article  CAS  Google Scholar 

  10. D. Song, A.G. Aberle, J. Xia Appl. Surf. Sci. 195, 291 (2002)

    Article  CAS  Google Scholar 

  11. O.I. Lupan, S.T. Shishiyanu, T.S. Shishiyanu, Superlatt. Microstruct. 42, 375 (2007)

    Article  CAS  Google Scholar 

  12. X.L. Cheng, H. Zhao, L.H. Huo, S. Gao, J.G. Zhao, Sens. Actuators B 102, 248 (2004)

    Article  Google Scholar 

  13. H.S. Kang, J.S. Kang, J.W. Kim, S.Y. Lee, J. Appl. Phys. 95, 1246 (2004)

    Article  CAS  Google Scholar 

  14. S.C. Ko, Y.C. Kim, S.S. Lee, S.H. Choi, S.R. Kim, Sens. Actuators A 103, 130 (2003)

    Article  Google Scholar 

  15. S. Major, K.L. Chopra, Sol. Energy Mater. 17, 319 (1988)

    Article  CAS  Google Scholar 

  16. M. Lorenz, E.M. Kaidashev, A. Rahm, T. Nobis, J. Lenzner, G. Wagner, D. Spemann, H. Hochmuth, M. Grundmann, Appl. Phys. Lett. 86, 143113 (2005)

    Article  Google Scholar 

  17. K. Ueda, H. Tabota, T. Kamai, Appl. Phys. Lett. 79, 988 (2001)

    Article  CAS  Google Scholar 

  18. J.F. Gregg, I. Petej, E. Jouguelet, C. Dennis, J. Phys. D Appl. Phys. 35, R121 (2002)

    Article  CAS  Google Scholar 

  19. R. Janisch, P. Gopal, N.A. Spaldin, J. Phys.: Condens. Matter 17, R657 (2005)

    Article  CAS  Google Scholar 

  20. T. Fukumura, H. Toyosaki, Y. Yamada, Semicond. Sci. Technol. 20, S103 (2005)

    Article  CAS  Google Scholar 

  21. T. Wakano, N. Fujimura, Y. Morinaga, N. Abe, A. Ashida, T. Ito, Phys E (Amsterdam) 10, 260 (2001)

    CAS  Google Scholar 

  22. B.B. Li, X.Q. Xiu, R. Zhang, Z.K. Tao, L. Chen, Z.L. Xie, Y.D. Zheng, Z. Xie, Mater. Sci. Semicond. Proc. 9, 141 (2006)

    Article  CAS  Google Scholar 

  23. E. Liu, P. Xiao, J.S. Chen, B.C. Lim, L. Li, Curr Appl. Phys. 8, 408 (2008)

    Article  Google Scholar 

  24. P.K. Sharma, R.K. Dutta, A.C. Pandey, J. Magn. Magn. Mater. 321, 3457 (2009)

    Article  CAS  Google Scholar 

  25. G.J. Huang, J.B. Wang, X.L. Zhong, G.C. Zhou, H.L. Yan, J. Mater. Sci. 42, 6464 (2007)

    Article  CAS  Google Scholar 

  26. P.V. Radovanovic, D.R. Gamelin, Phys. Rev. Lett. 91, 157202 (2003)

    Article  Google Scholar 

  27. S. Deka, P.A. Joy, Chem. Mater. 17, 6507 (2005)

    Article  CAS  Google Scholar 

  28. D.R. Gamelin, J. Am. Chem. Soc. 124, 15192 (2002)

    Article  Google Scholar 

  29. A.M. Becerra, A.E. Castro-Luna, J. Chil. Chem. Soc. 50, 465 (2005)

    Article  CAS  Google Scholar 

  30. S.V. Bhat, F.L. Deepak, Solid State Commun. 135, 345 (2005)

    Article  CAS  Google Scholar 

  31. D.A. Schwartz, K.R. Kittilstved, D.R. Gsaamelin, Appl. Phys. Lett. 85, 1395 (2004)

    Article  CAS  Google Scholar 

  32. H. Weakliem, J. Chem. Phys. 36, 2117 (1962)

    Article  CAS  Google Scholar 

  33. C. Li, G. Fang, Q. Fu, F. Su, G. Li, X. Wu, X. Zhao, J. CrystalGrowth 292, 19 (2006)

    CAS  Google Scholar 

  34. Y. Sun, N.G. Ndifor-Angwafor, D.J. Riley, M.N.R. Ashfold, Chem. Phys. Lett. 431, 352 (2006)

    Article  CAS  Google Scholar 

  35. Z. Fang, Y. Wang, D. Xu, Y. Tan, X. Liu, Opt. Mater. 26, 239 (2004)

    Article  CAS  Google Scholar 

  36. Y. Dai, Y. Zhang, Y.Q. Bai, Z.L. Wang, Chem. Phys. Lett. 375, 96 (2003)

    Article  CAS  Google Scholar 

  37. J. Jie, G. Wang, X. Han, Q. Yu, Y. Liao, G. Li, J. Hou, Chem. Phys. Lett. 387, 466 (2004)

    Article  CAS  Google Scholar 

  38. S.M. Zhou, X.H. Zhang, X. Meng, K. Zou, X. Fan, S. Wu, S.T. Lee, Nanotechnology 15, 1152 (2004)

    Article  CAS  Google Scholar 

  39. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Phan, R. He, H. Choi, Adv. Funct. Mater. 12, 323 (2002)

    Article  CAS  Google Scholar 

  40. Z.W. Zhao, B.K. Tay, J.S. Chen, J.F. Hu, B.C. Lim, G.P. Li, Appl. Phys. Lett. 90, 152502 (2007)

    Article  Google Scholar 

  41. R.B. Bylsma, W.M. Becker, J. Kossut, U. Debska, D. Yoder-Short, Phys. Rev. B 33, 8207 (1986)

    Article  CAS  Google Scholar 

  42. Y.R. Lee, A.K. Ramdas, R.L. Aggarwal, Phys. Rev. B 38, 10600 (1988)

    Article  CAS  Google Scholar 

  43. Y.D. Kim, S.L. Cooper, M.V. Klein, B.T. Jonker, Phys. Rev. B 49, 1732 (1994)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very thankful to central instrumentation facility, Pondicherry University for providing SEM and PL studies, UGC for funding XRD measurement at Department of Physics, Pondicherry University, and Dr. R. Venkatesan for providing UV–visible spectroscopic analysis, Department of Chemistry, Pondicherry University, Puducherry, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Elilarassi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elilarassi, R., Chandrasekaran, G. Synthesis, structural and optical characterization of Ni-doped ZnO nanoparticles. J Mater Sci: Mater Electron 22, 751–756 (2011). https://doi.org/10.1007/s10854-010-0206-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-010-0206-8

Keywords

Navigation