Synthesis, structural analysis and microwave dielectric properties of LnTiSbxNb1−xO6 (Ln = Ce, Pr) ceramics

  • Shyla Joseph
  • James T. Joseph
  • Annamma John
  • J. K. Thomas
  • Sam Solomon


LnTiSbxNb1−xO6 (Ln = Ce, Pr) ceramics were prepared by the conventional solid state ceramic route for x = 0, 0.05, 0.1, 0.15, 0.2 and 0.25. The structure of the materials was analyzed using X-ray diffraction techniques. The cell parameters and the theoretical densities of the samples were calculated using least square methods. The samples are sintered to more than 90% of the theoretical density at 1,325–1,350 °C. The microwave dielectric properties were measured using the cavity resonator method. The surface morphology of the sintered sample was analyzed using Scanning Electron Microscopy. All the materials have good microwave dielectric properties and are suitable for dielectric resonator applications.


Antimony Theoretical Density Microwave Dielectric Property Sintered Density Dielectric Resonator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Sam Solomon acknowledges University Grants Commission for the Post Doctoral Research award.


  1. 1.
    A. Kan, H. Ogawa, T. Oishi, A. Yokoi, H. Ohsato, Crystal structure and microwave properties of Aeschynite-type R(W0.5Ti1.5)O6 (R = Nd, Sm, Eu Gd and Dy) ceramics. Jpn. J. Appl. Phys. 44, 7103–7106 (2005)CrossRefGoogle Scholar
  2. 2.
    V.V. Kazantsev, E.I. Krylov, A.K. Borisov, A.I. Chupin, Conditions of formation of double tantalates of rare-earth elements with titanium, LnTiTaO6. Russian J. Inorg. Chem. 19, 506–507 (1974)Google Scholar
  3. 3.
    C.E. Holcombe, Ternary tantalate compositions. J. Mater. Sci. Lett. 14, 2255–2258 (1974)Google Scholar
  4. 4.
    C.E. Holcombe, M.K. Morrow, D.D. Smith, D.A. Carpenter, Survey study of low expanding, high melting, mixed oxides, Y-1913 (Union Carbide Corporation, Nuclear Division, Oak Ridge, TN (1974)Google Scholar
  5. 5.
    X. Qi, R. Illingworth, H.G. Gallagher, T.P.J. Han, B. Henderson, Potential laser gain media with stoichiometric formula RETiNbO6. J. Cryst. Growth. 160, 111–118 (1996)CrossRefGoogle Scholar
  6. 6.
    X. Qi, H.G. Gallagher, T.P.J. Han, B. Henderson, Modified Czochralski growth and characterization of RETiTaO6 crystals. J. Cryst. Growth. 180, 73–80 (1997)CrossRefGoogle Scholar
  7. 7.
    M. Maeda, T. Yamamura, T. Ikeda, Dielectric characteristics of several complex oxide ceramics at microwave frequencies. Jpn. J. Appl. Phys. 26, 76–79 (1987)CrossRefGoogle Scholar
  8. 8.
    M.T. Sebastiam, Sam Solomon, R. Ratheesh, J. George, P. Mohanan, Preparation, characterization, and microwave properties of RETiNbO6 (RE = Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Y, and Yb) dielectric ceramics. J. Am. Ceram. Soc. 84, 1487–1489 (2001)CrossRefGoogle Scholar
  9. 9.
    K.P. Surendran, Sam Solomon, M.R. Varma, P. Mohanan, M.T. Sebastian, Microwave dielectric properties of RETiTaO6 (RE = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Er, Yb, Al and In) ceramics. J. Mater. Res. 17, 2561–2566 (2002)CrossRefGoogle Scholar
  10. 10.
    T. Oishi, A. Kan, H. Ohsato, H. Ogawa, Crystal structure microwave dielectric property relations in Sm(Nb1−xTax)(Ti1−yZry)O6 ceramics. J. Eur. Ceram. Soc. 26, 2075–2079 (2006)CrossRefGoogle Scholar
  11. 11.
    James T. Joseph, H. Padma Kumar, M.R. Varma, J.K. Thomas, Sam Solomon, Effect of Nb2O5 substitution on the dielectric characteristics of DyTiTaO6 microwave ceramics. Mater. Lett. 62, 1064–1066 (2008)CrossRefGoogle Scholar
  12. 12.
    Sam Solomon, H. Padma Kumar, Lovely Jacob, J.K. Thomas, M.R. Varma, Ln(Zr1/3Ti2/3)TaO6 (Ln = Ce, Pr, Nd and Eu): a novel group of microwave ceramics. J. Alloys. Compd. 461, 675–677 (2008)CrossRefGoogle Scholar
  13. 13.
    H. Padmakumar, Shyla Joseph, Sam Solomon, M.R. Varma, J.K. Thomas, Synthesis, structure analysis and microwave dielectric properties of LnTiSbxNb1-xO6 (Ln = Ce, Pr, Nd and Sm) ceramics. Int. J. Appl. Ceram. Tech. 5, 347 (2008)CrossRefGoogle Scholar
  14. 14.
    J. Krupka, K. Derzakowski, B. Riddle, J.B. Jarvis, A dielectric resonator for measurements of complex permittivity of low loss dielectric materials as a function of temperature. Meas. Sci. Technol. 9, 1751 (1998)CrossRefGoogle Scholar
  15. 15.
    K.P. Surendran, M.R. Varma, P. Mohanan, M.T. Sebastian, Microwave dielectric properties of RE1-xRE’xTiNbO6 [RE = Pr, Nd, Sm; RE’ = Gd, Dy, Y] ceramics. J. Am. Ceram. Soc. 86(10), 1695–1699 (2003)CrossRefGoogle Scholar
  16. 16.
    A. Chelkowski, Dielectric Physics (Elsevier, Anderson, The Netherlands, 1980)Google Scholar
  17. 17.
    R.D. Shannon, Dielectric polarizability of ions in oxides and fluorides. J. Appl. Phy. 73, 348–366 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Shyla Joseph
    • 1
  • James T. Joseph
    • 2
  • Annamma John
    • 1
  • J. K. Thomas
    • 3
  • Sam Solomon
    • 1
  1. 1.Department of PhysicsSt. John’s CollegeAnchalIndia
  2. 2.Department of ChemistrySt. John’s CollegeAnchalIndia
  3. 3.Electronic Materials Research Laboratory, Department of PhysicsMar Ivanios CollegeThiruvananthapuramIndia

Personalised recommendations