Fabrication of high Tc lead free (1 − x)BaTiO3xBi0.5K0.5TiO3 positive temperature coefficient of resistivity ceramics using reoxidation method

  • Jifeng Wei
  • Yongping Pu
  • Yuqin Mao
  • Haidong Wu


(1 – x)BaTiO3xBi0.5K0.5TiO3 (abbreviated as BT–BKT, where x = 0, 0.1 and 0.2) ceramics were prepared by solid state reaction method. All ceramic samples were sintered in a pure N2 flow atmosphere, subsequently reoxidized at a temperature range of 800–1,100 °C in air for several hours. The influences of BKT content and reoxidation on the positive temperature coefficient of resistivity (PTCR) behavior of ceramic samples were investigated. BT–BKT ceramic samples sintered in N2 possessed relatively low room temperature resistivity (ρRT) and showed weak PTC effect. Through an appropriate reoxidation, the ceramic samples re-obtained PTC effect of almost three orders of magnitude. With the addition of BKT, the Curie temperature (Tc) was enhanced by ~50 °C than the pure BT ceramics.


BaTiO3 Ceramic Sample Resistivity Jump BaTiO3 Lattice Surface Acceptor State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research has been supported by the Key Project of Chinese Ministry of Education (No.209126), Research projects of Science and Technology Division, Shaanxi (No.2010K10-14), Foundation of Shaanxi Educational Committee (No.112H011) and the Graduate Innovation Fund of Shaanxi University of Science and Technology.


  1. 1.
    J. Rödel, W. Jo, K.T.P. Seifert, E.M. Anton, T. Granzow, J. Am. Ceram. Soc. 92, 1154 (2009)CrossRefGoogle Scholar
  2. 2.
    P.K. Panda, J. Mater. Sci. 44, 5050 (2009)CrossRefGoogle Scholar
  3. 3.
    W. Heywang, J. Am. Ceram. Soc. 47, 484 (1964)CrossRefGoogle Scholar
  4. 4.
    G.H. Jonker, Solid-State Electron. 7, 895 (1964)CrossRefGoogle Scholar
  5. 5.
    H. Takeda, W. Aoto, T. Shiosaki, Appl. Phys. Lett. 87, 101104 (2005)CrossRefGoogle Scholar
  6. 6.
    S. Urek, M. Drofenik, J. Eur. Ceram. Soc. 19, 913 (1999)CrossRefGoogle Scholar
  7. 7.
    Y. Pu, J. Wei, Y. Mao, J. Wang, J. Alloys. Compd. 498, 5 (2010)CrossRefGoogle Scholar
  8. 8.
    J.G. Kim, J. Mater. Sci. 39, 4931 (2004)CrossRefGoogle Scholar
  9. 9.
    J.G. Kim, J. Mater. Sci. Lett. 21, 1645 (2002)CrossRefGoogle Scholar
  10. 10.
    J. Zhao, L. Li, Z. Gui, Mater. Sci. Eng. B 94, 202 (2002)CrossRefGoogle Scholar
  11. 11.
    W. Huo, Y. Qu, Sens. Actuators A 128, 265 (2006)CrossRefGoogle Scholar
  12. 12.
    H. Niimi, K. Mihara, Y. Sakabe, J. Am. Ceram. Soc. 90, 1817 (2007)CrossRefGoogle Scholar
  13. 13.
    I.C. Ho, S.L. Fu, J. Am. Ceram. Soc. 75, 728 (1992)CrossRefGoogle Scholar
  14. 14.
    J. Wei, Y. Pu, Y. Mao, J. Wang, J. Am. Ceram. Soc. 93, 1527 (2010)CrossRefGoogle Scholar
  15. 15.
    Y.M. Chiang, T. Takagi, J. Am. Ceram. Soc. 75, 2017 (1992)CrossRefGoogle Scholar
  16. 16.
    S.B. Desu, D.A. Payne, J. Am. Ceram. Soc. 75, 2020 (1992)CrossRefGoogle Scholar
  17. 17.
    H.T. Langhammer, D. Makovec, Y. Pu, H.P. Abicht, M. Drofenik, J. Eur. Ceram. Soc. 26, 2899 (2006)CrossRefGoogle Scholar
  18. 18.
    S. Urek, M. Drofenik, J. Eur. Ceram. Soc. 19, 915 (1999)CrossRefGoogle Scholar
  19. 19.
    H. Beltrán, E. Cordoncillo, P. Escribano, J. Appl. Phys. 98, 094102 (2005)CrossRefGoogle Scholar
  20. 20.
    J. Novak, J. Fousek, J. Maryska, M. Marvan, Mater. Sci. Eng. B 120, 14 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jifeng Wei
    • 1
  • Yongping Pu
    • 1
  • Yuqin Mao
    • 1
  • Haidong Wu
    • 1
  1. 1.School of Materials Science and EngineeringShaanxi University of Science and TechnologyXiangChina

Personalised recommendations