Synthesis of ZnO nanowires by the hydrothermal method, using sol–gel prepared ZnO seed films



Zinc oxide (ZnO) nanowires with various morphologies are synthesized by the hydrothermal method on silicon substrates coated with ZnO thin films. The ZnO films are used as the seed layer and are prepared using the sol–gel technique. Experimental results demonstrate that the synthesis of ZnO nanowires is dependent on the crystalline properties of the ZnO seed-layer films. Sol concentration is the controlled parameter for the preparation of ZnO seed-layer films in this study. The ZnO films are found to have the hexagonal wurtzite structure with highly preferred growth along the c-axis at suitable sol concentrations. The vertically aligned ZnO nanowire arrays on the substrates are believed to be the result of the epitaxial growth of the ZnO seed layer. Scanning electron microscopy shows that nanowires with uniform distribution in length, diameter, and density are obtained. X-ray diffraction patterns clearly reveal that the ZnO nanowires are primarily grown along the c-axis direction. Transmission electron microscopy and selected-area electron diffraction measurements show that the nanowires have good crystalline properties. The well-aligned and high surface areas of the ZnO nanowires make them a potential candidate for applications in solar cells, field emission devices, and ultra-sensitive gas sensors.


Hydrothermal Method Zinc Nitrate Hexahydrate Wurtzite Crystal Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author would like to thank the National Nano Device Laboratories for equipment supporting this research under Contract No. NDL98-C05SP-051. Mr. K. L. Juan and H. T. Lin are appreciated for their assistance with the experiments.


  1. 1.
    K. Ramamoorthy, M. Arivanandhan, K. Sankaranarayanan, C. Sanjeeviraja, Mater. Chem. Phys. 85, 257–262 (2004)CrossRefGoogle Scholar
  2. 2.
    F. Xu, K. Yu, M.R. Shi, Q.Y. Wang, Z.Q. Zhu, S.H. Huang, J. Nanosci. Nanotechno. 6, 3794–3798 (2006)CrossRefGoogle Scholar
  3. 3.
    Z. Fan, J.G. Lu, J. Nanosci. Nanotechno. 5, 1561–1573 (2005)CrossRefGoogle Scholar
  4. 4.
    S.N. Bai, T.Y. Tseng, Thin Solid Films 515, 872–875 (2006)CrossRefGoogle Scholar
  5. 5.
    M.K. Jayaraj, A. Antony, M. Ramachandran, Bull. Mater. Sci. 25, 227–230 (2002)CrossRefGoogle Scholar
  6. 6.
    L.N. Dem’yanets, L.E. Li, T.G. Uvarova, J. Mater. Sci. 41, 1439–1444 (2006)CrossRefGoogle Scholar
  7. 7.
    F. Xu, Z.Y. Yuan, G.H. Du, T.Z. Ren, C. Bouvy, M. Halasa, B.L. Su, Nanotechnology 17, 588–594 (2006)CrossRefGoogle Scholar
  8. 8.
    W.I. Park, D.H. Kim, S.W. Jung, G.C. Yi, Appl. Phys. Lett. 80, 4232–4234 (2002)CrossRefGoogle Scholar
  9. 9.
    Y.C. Kong, D.P. Yu, B. Zhang, W. Fang, S.Q. Feng, Appl. Phys. Lett. 78, 407–409 (2001)CrossRefGoogle Scholar
  10. 10.
    M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, Adv. Mater. 13, 113–116 (2001)CrossRefGoogle Scholar
  11. 11.
    S. Mandal, R.K. Singha, A. Dhar, S.K. Ray, Mater. Res. Bull. 43, 244–250 (2008)CrossRefGoogle Scholar
  12. 12.
    I. Levin, A. Davydov, B. Nikoobakht, N. Sanford, Appl. Phys. Lett. 87, 103110 (2005)CrossRefGoogle Scholar
  13. 13.
    A. Reiser, A. Ladenburger, G.M. Prinz, M. Schirra, M. Feneberg, A. Langlois, R. Enchelmaier, Y. Li, R. Sauer, K. Thonke, J. Appl. Phys. 101, 054319 (2007)CrossRefGoogle Scholar
  14. 14.
    J.B. Baxter, E.S. Aydil, J. Cryst, Growth 274, 407–411 (2005)CrossRefGoogle Scholar
  15. 15.
    W. Lee, M.C. Jeong, J.M. Myoung, Acta Mater. 52, 3949–3957 (2004)CrossRefGoogle Scholar
  16. 16.
    S.N. Bai, H.H. Tsai, T.Y. Tseng, Thin Solid Films 516, 155–158 (2007)CrossRefGoogle Scholar
  17. 17.
    Y. Sun, N.G.N. Angwafor, D.J. Riley, M.N.R. Ashfold, Chem. Phys. Lett. 431, 352–357 (2006)CrossRefGoogle Scholar
  18. 18.
    Q.C. Li, V. Kumar, Y. Li, H.T. Zhang, T.J. Marks, R.P.H. Chang, Chem. Mater. 17, 1001–1006 (2005)CrossRefGoogle Scholar
  19. 19.
    H.P. Klug, L.E. Alexander, X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd edn. (Wiley-Interscience, New York, 1974), pp. 687–690Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Electronic Engineering and Institute of ElectronicChienkuo Technology UniversityChanghua CityTaiwan, ROC
  2. 2.National Nano Device Laboratories, New ConstructionHsinchu CityTaiwan, ROC

Personalised recommendations