Microstructural and electrical characteristics of rapidly annealed Ni/Mo Schottky rectifiers on cleaned n-type GaN (0001) surface

  • I. Jyothi
  • V. Rajagopal Reddy
  • Chel-Jong Choi


We have investigated the electrical and microstructural properties of Ni/Mo Schottky rectifiers to n-type GaN by current–voltage (I–V) and transmission electron microscopy (TEM) before and after annealing at 600 °C. The obtained barrier height for as-deposited Ni/Mo contact is 0.66 eV. It is observed that the barrier height increases with annealing temperature up to 500 °C, reaching a maximum value of 0.75 eV at this temperature. However, the Schottky barrier height of the Ni/Mo Schottky contact slightly decreased to 0.67 eV (I–V) when the contact was annealed at 600 °C. According to the HRTEM, STEM and EDX analysis, the formation of Ga-Ni interfacial layer at the interface results in the accumulation of gallium vacancies near the surface of the GaN layer. This could be the reason for increase in barrier heights upon annealing at elevated temperatures. The variation in the measured barrier height after annealing at 600 °C may be due to the formation of native oxide layer at the interface compared to the 500 °C annealed contact.


High Resolution Transmission Electron Microscopy Barrier Height High Resolution Transmission Electron Microscopy Scanning Transmission Electron Microscopy Schottky Barrier Height 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported by the grant from the “Industrial Source Technology Development Programs (2009-F014-01)” of the Ministry of Knowledge Economy (MKE) of Korea.


  1. 1.
    S.J. Pearton, F. Ren, A.P. Zhang, G. Dang, X.A. Cao, K.P. Lee, H. Cho, B.P. Gila, J.W. Johnson, C. Monier, C.R. Abernathy, J. Han, A.G. Baca, J.I. Chyi, C.-M. Lee, T.-E. Nee, C.-C. Chuo, S.N.G. Chu, Mater. Sci. Eng. B 82, 227 (2001)CrossRefGoogle Scholar
  2. 2.
    H. Zhong, A. Tyagi, N. Pfaff, M. Saito, K. Fujito, J.S. Speck, S.P. DenBaars, S. Nakamura, Jpn. J. Appl. Phys. 48, 030201 (2009)CrossRefGoogle Scholar
  3. 3.
    T. Miyoshi, S. Masui, T. Okada, T. Yanamoto, T. Kozaki, S. Nagahama, T. Mukai, Appl. Phys. Express. 2, 062201 (2009)CrossRefGoogle Scholar
  4. 4.
    D. Visalli, M.V. Hove, J. Derluyn, S. Degroote, M. Leys, K. Cheng, M. Germain, G. Borghs, Jpn. J. Appl. Phys. 48, 04C101 (2009)CrossRefGoogle Scholar
  5. 5.
    S. Kabra, H. Kaur, S. Haldar, M. Gupta, R.S. Gupta, Solid State Electron. 52, 25 (2008)CrossRefGoogle Scholar
  6. 6.
    R. Aggarwal, A. Agrawal, M. Gupta, Solid State Electron. 52, 1610 (2008)CrossRefGoogle Scholar
  7. 7.
    T. Nomura, H. Kambayashi, Y. Niiyama, S. Otomo, S. Yoshida, Solid State Electron. 52, 150 (2008)CrossRefGoogle Scholar
  8. 8.
    S. Hoshi, M. Itoh, T. Marui, H. Okaita, Y. Morino, I. Tamai, F. Toda, S. Seki, T. Egawa, Appl. Phys. Express. 2, 061001 (2009)CrossRefGoogle Scholar
  9. 9.
    S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)Google Scholar
  10. 10.
    E.H. Rhoderick, Metal-Semiconductor Contacts (Oxford University Press, Oxford, 1978)Google Scholar
  11. 11.
    J.D. Guo, F.M. Pan, M.S. Feng, R.J. Guo, P.F. Chou, C.Y. Chang, J. Appl. Phys. 80, 3 (1996)CrossRefGoogle Scholar
  12. 12.
    Y. Sun, X.M. Shen, J. Wang, D.G. Zhao, G. Feng, Y. Fu, S.M. Zhang, Z.H. Zhang, Z.H. Feng, Y.X. Bai, H. Yang, J. Phys. D Appl. Phys. 35, 2648 (2002)CrossRefGoogle Scholar
  13. 13.
    V. Rajagopal Reddy, N. Ramesha Reddy, C.-J. Choi, Semicond. Sci. Technol. 21, 1753 (2006)CrossRefGoogle Scholar
  14. 14.
    V. Rajagopal Reddy, P. Koteswara Rao, C.K. Ramesh, Mater. Sci. Eng. B 137, 200 (2007)CrossRefGoogle Scholar
  15. 15.
    C.L. Yu, C.H. Chen, S.J. Chang, P.C. Chang, J. Elect. Chem. Soc. 154(2), J71 (2007)CrossRefGoogle Scholar
  16. 16.
    F. Tian, E.F. Chor, Phys. Stat. Sol. C 5, 1953 (2008)CrossRefGoogle Scholar
  17. 17.
    L. Dobos, B. Pecz, L. Toth, Z.J. Horvath, Z.E. Horvath, B. Beamont, Z. Bougrioua, Vacuum. 82, 794 (2008)CrossRefGoogle Scholar
  18. 18.
    L. Fang, W. Tao, S. Bo, H. Sen, L. Fang, M. Nan, X. Fu-Jun, W. Peng, Y.J. Quan, Chin. Phys. B. 18, 1614 (2009)CrossRefGoogle Scholar
  19. 19.
    K. Takahashi, J.-P. Ao, Y. Ikawa, C.-Y. Hu, H. Kawai, N. Shinohara, N. Niwa, Y. Ohno, Jpn. J. Appl. Phys. 48, 04C095 (2009)CrossRefGoogle Scholar
  20. 20.
    M. Mamor, J. Phys. Codens. Matter. 21, 335802 (2009)CrossRefGoogle Scholar
  21. 21.
    V. Rajagopal Reddy, M. Ravinandan, P. Koteswara Rao, C.-J. Choi, J. Mater Sci. Mater. Electron. 20, 1018 (2009)CrossRefGoogle Scholar
  22. 22.
    E.H. Rhoderick, T.H. Williams (eds.), Metal-Semiconductor Contacts (Oxford Science, Oxford, 1988)Google Scholar
  23. 23.
    M. Drechsler, D.M. Hofman, B.K. Meyer, T. Detchprohm, H. Amano, I. Akasaki, Jpn. J. Appl. Phys. 34, L1178 (1995)CrossRefGoogle Scholar
  24. 24.
    I. Jyothi, V. Rajagopal Reddy, M. Sivapratap Reddy, C.-J. Choi, J.-S. Bae, Phys. Statu. Solidi. A. (2009). doi:  10.1002/pssa.200925308
  25. 25.
    D.T. Quan, H. Hbib, Solid State Electron. 36, 339 (1993)CrossRefGoogle Scholar
  26. 26.
    Y.-J. Lin, W.-X. Lin, C.-T. Lee, H.-C. Chang, Jpn. J. Appl. Phys. 45, 2505 (2006)CrossRefGoogle Scholar
  27. 27.
    J. Sun, K.A. Rickert, J.M. Redwing, A.B. Ellis, F.J. Himpsel, T.F. Kuech, Appl. Phys. Lett. 76, 415 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of PhysicsSri Venkateswara UniversityTirupatiIndia
  2. 2.School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC)Chonbuk National UniversityJeonjuKorea

Personalised recommendations