Chemical synthesis and low temperature electrical transport in polypyrrole doped with sodium bis(2-ethylhexyl) sulfosuccinate

  • Manish Taunk
  • Atul Kapil
  • Subhash Chand


Polypyrrole (PPy) is polymerized by chemical oxidative polymerization in presence of anionic surfactant sodium bis (2-ethylhexyl) sulfosuccinate (DEHS) as the dopant. The electrical conductivity was optimized in terms of oxidant to monomer molar ratio and polymerization yield was measured for these reactions. We have used ammonium persulphate (APS) as the oxidant for polymerization in this series of experiments. The effect of concentration of oxidant on the electrical conductivity is examined. Chemical synthesis of polypyrrole is supported by FTIR spectrum. The electrical conductivity of doped and undoped polypyrrole has been measured in the temperature range of 10–300 K and is found to increase with rise in temperature. Electrical conductivity of PPy was analyzed in the light of various charge transport models. Analysis of the electrical conductivity data reveals that in the temperature range 60–300 K electrical transport is predominantly governed by power law behaviour given by Kivelson model. However in the low temperature range 10–60 K electrical transport is dominated by the fluctuation assisted mechanism.


Outer Probe Polypyrrole Electrical Transport Excess Conductivity Temperature Dependent Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Manish Taunk and Atul Kapil are grateful to the financial support provided by the Ministry of Human Resource & Development, New Delhi India. We are also thankful to Mr. Dilbag Singh Rana for FTIR spectroscopy.


  1. 1.
    H.S. Nalwa, Handbook of organic conductive molecules & polymers (Wiley, New York, 1997)Google Scholar
  2. 2.
    T.A. Skotheim, J.R. Reynolds, Handbook of conducting polymers, 3rd edn. (CRC press Taylor and Francis Group, Boca Raton, 2007)Google Scholar
  3. 3.
    B.D. Malhotra, Handbook of polymers in electronics (Rapra Technology Ltd, UK, 2002)Google Scholar
  4. 4.
    D.L. Wise, Electrical and optical polymer systems (CRC press Taylor and Francis Group, Boca Raton, 1998)Google Scholar
  5. 5.
    A. Kapil, M. Taunk, S. Chand, J. Mater. Sci. Mater. Electron. (2009). doi: 10.1007/s10854-009-9931-2
  6. 6.
    J. Ouyang, Y. Li, Polymer 38, 3997 (1997)CrossRefGoogle Scholar
  7. 7.
    S.P. Armes, Synth. Met. 20, 365 (1987)CrossRefGoogle Scholar
  8. 8.
    T.V. Vernitskaya, O.N. Efimov, Russ. Chem. Rev. 66, 443 (1997)CrossRefGoogle Scholar
  9. 9.
    V. Saxena, B.D. Malhotra, Curr. Appl. Phys. 3, 293–305 (2003)CrossRefGoogle Scholar
  10. 10.
    M. Taunk, A. Kapil, S. Chand, Open Macromol. J. 2, 74–79 (2008)CrossRefGoogle Scholar
  11. 11.
    E.J. Oh, K.S. Jang, Synth. Met. 119, 109 (2001)CrossRefGoogle Scholar
  12. 12.
    E.J. Oh, K.S. Jang, A.G. MacDiarmid, Synth. Met. 125, 267 (2002)CrossRefGoogle Scholar
  13. 13.
    R. Keibooms, R. Menon, K. Li, Handbook of advanced electronic and photonic materials and devices, vol. 8 (Academic, New York, 2001)Google Scholar
  14. 14.
    J.L. Bredas, K. Yakushi, J.C. Scott, G.B. Street, Phys. Rev. B 30, 1023 (1984)CrossRefGoogle Scholar
  15. 15.
    Y. Shimoi, S. Abe, Phys. Rev. B 50, 14781 (1994)CrossRefGoogle Scholar
  16. 16.
    J.H. Kaufman, N. Colaneri, J. Scott, G.B. Street, Phys. Rev. Lett. 53, 1005 (1984)CrossRefGoogle Scholar
  17. 17.
    V. Ambegaokar, B.I. Halperin, J.S. Langer, Phys. Rev. B 4, 2612 (1971)CrossRefGoogle Scholar
  18. 18.
    S. Kivelson, Phys. Rev. Lett. 46, 1344 (1981)CrossRefGoogle Scholar
  19. 19.
    S. Kivelson, Phys. Rev. B 25, 3798 (1982)CrossRefGoogle Scholar
  20. 20.
    P. Kuivalainen, H. Stubb, H. Isolato, C. Holmstrom, Phys. Rev. B 31, 7900 (1985)CrossRefGoogle Scholar
  21. 21.
    N.F. Mott, E.A. Davis, Electronic processes in non-crystalline materials (Oxford University Press, London, 1979)Google Scholar
  22. 22.
    K. Lee, R. Menon, C.O. Yoon, A.J. Heeger, Phys. Rev. B 52, 4779 (1995)CrossRefGoogle Scholar
  23. 23.
    L. Zuppiroli, M.N. Bussac, S. Paschen, O. Chauvet, L. Forro, Phys. Rev. B 50, 5196 (1994)CrossRefGoogle Scholar
  24. 24.
    G. Paasch, T. Lindner, S. Scheinert, Synth. Met. 132, 97 (2002)CrossRefGoogle Scholar
  25. 25.
    V.N. Prigodin, A.N. Samukhin, A.J. Epstein, Synth. Met. 141, 155 (2004)CrossRefGoogle Scholar
  26. 26.
    P. Sheng, Phys. Rev. B 21, 2180 (1980)CrossRefGoogle Scholar
  27. 27.
    S. Xing, G. Zhao, Polym. Bull. 57, 933 (2006)CrossRefGoogle Scholar
  28. 28.
    A. Kassim, H.N.M.E. Mahmud, F. Adzmi, Mater. Sci. Semiconductor Process. 10, 246 (2007)CrossRefGoogle Scholar
  29. 29.
    S. Xing, G. Zhao, J. Appl. Polym. Sci. 104, 1987 (2007)CrossRefGoogle Scholar
  30. 30.
    N. Bohli, F. Gmati, A.B. Mohamed, V. Vigneras, J.L. Miane, J. Phys. D Appl. Phys. 42, 205404 (2009)CrossRefGoogle Scholar
  31. 31.
    M.C. Anglada, N.F. Anglada, J.M. Ribo, V. Movaghar, Synth. Met. 78, 169 (1996)CrossRefGoogle Scholar
  32. 32.
    V.N. Prigodin, A.J. Epstein, Synth. Met. 125, 43 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of PhysicsNational Institute of TechnologyHamirpurIndia

Personalised recommendations