Effect of Mn doping on the dielectric properties of BaTi0.9Sn0.1O3 ceramics

  • Chunlin Fu
  • Jing Yang
  • Wei Cai
  • Xiaoling Deng
  • Liwen Tang


Pure and Mn-doped BaTi0.9Sn0.1O3 ceramics are prepared via the conventional solid state reaction method. The microstructures, dielectric properties, and diffuse transition of BaTi0.9Sn0.1O3 ceramics with 0, 0.2, 1 and 2 at.% Mn have been investigated. The results indicate that manganese ions enter the unit cell maintaining the perovskite structure of solid solution. Grain size of BaTi0.9Sn0.1O3 ceramics sharply decreases after doping MnO2. However, once MnO2 content is more than 0.2 at.%, the average grain size of Mn-doped BaTi0.9Sn0.1O3 ceramics increases with the increasing of MnO2 content. The addition of manganese leads to the increase of the Curie temperature. The diffuseness of the phase transition of Mn-doped BTS ceramics decreases with the increase of Mn content, which may be due to grain size effect.


Curie Temperature Barium Strontium Titanate Diffuse Phase Transition Conventional Solid State Reaction Method Relaxor Ferroelectric 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research is supported by the Science and Technology Research Project of Chongqing Education Committee (Grant No. KJ091416), the Key Project of Chinese Ministry of Education (Grant No. 209099).


  1. 1.
    S. Sheng, P. Wang, X. Chen, X.Y. Zhang, C.K. Ong, J. Appl. Phys. 105, 114509 (2009)CrossRefGoogle Scholar
  2. 2.
    Y.C. Chen, J. Phys. Chem. Solids 69, 585 (2008)CrossRefGoogle Scholar
  3. 3.
    C. Fu, C. Yang, H. Chen, L. Hu, J. Appl. Phys. 97, 034110 (2005)CrossRefGoogle Scholar
  4. 4.
    S.G. Lu, Z.K. Xu, H. Chen, Appl. Phys. Lett. 85, 5319 (2004)CrossRefGoogle Scholar
  5. 5.
    C. Fu, W. Cai, H. Chen, S. Feng, F. Pan, C. Yang, Thin Solid Films 516, 5258 (2008)CrossRefGoogle Scholar
  6. 6.
    A.B. Ustinov, B.A. Kalinikos, V.S. Tiberkevich, A.N. Slavin, G. Srinivasan, J. Appl. Phys. 103, 063908 (2008)CrossRefGoogle Scholar
  7. 7.
    J. Peräntie, J. Hagberg, A. Uusimäki, H. Jantunen, Appl. Phys. Lett. 93, 132905 (2008)CrossRefGoogle Scholar
  8. 8.
    X. Wei, X. Yao, Mater. Sci. Eng. B 137, 184 (2007)CrossRefGoogle Scholar
  9. 9.
    S. Markovic, M. Mitric, N. Cvjeticanin, D. Uskokovic, J. Eur. Ceram. Soc. 27, 505 (2007)CrossRefGoogle Scholar
  10. 10.
    X. Wei, X. Wan, X. Yao, J. Electroceram. 21, 226 (2008)CrossRefGoogle Scholar
  11. 11.
    I. Rivera, A. Kumar, N. Ortega, R.S. Katiyar, S. Lushnikov, Solid State Commun. 149, 172 (2009)CrossRefGoogle Scholar
  12. 12.
    K. Balamurugan, N.H. Kumar, B. Ramachandran, M.S.R. Rao, J.A. Chelvane, P.N. Santhosh, Solid State Commun. 149, 884 (2009)CrossRefGoogle Scholar
  13. 13.
    C. Fu, C. Yang, H. Chen, Y. Wang, L. Hu, Mater. Sci. Eng. B 119, 185 (2005)CrossRefGoogle Scholar
  14. 14.
    X.G. Tang, K.H. Chew, H.L.W. Chan, Acta Mater. 52, 5177 (2004)CrossRefGoogle Scholar
  15. 15.
    A. Outzourhit, M.A.E.I. Raghni, M.L. Hafid, F. Bensamka, J. Alloys. Compd. 340, 214 (2002)CrossRefGoogle Scholar
  16. 16.
    L.N. Gao, J.W. Zhai, X. Yao, Z.K. Xu, Mater. Lett. 62, 3198 (2008)CrossRefGoogle Scholar
  17. 17.
    C. Fu, F. Pan, W. Cai, X. Deng, Integr. Ferroelectr. 104, 1 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Chunlin Fu
    • 1
  • Jing Yang
    • 1
  • Wei Cai
    • 1
  • Xiaoling Deng
    • 1
  • Liwen Tang
    • 2
  1. 1.School of Metallurgical and Materials EngineeringChongqing University of Science and TechnologyChongqingChina
  2. 2.College of Materials Science and EngineeringChongqing University of TechnologyChongqingChina

Personalised recommendations