Structure and piezoelectric properties of new ternary K0.5Na0.5NbO3–LiSbO3–CaTiO3 lead-free piezoceramics

  • Qiaoji Zheng
  • Dunmin Lin
  • Xiaochun Wu
  • Chenggang Xu
  • Chun Yang
  • K. W. Kwok


New ternary (1−x)K0.5Na0.5NbO3x(0.80LiSbO3–0.20CaTiO3) lead-free ceramics were fabricated by a conventional ceramic technique and their structure and piezoelectric properties were studied. The results of X-ray diffraction reveal that LiSbO3 and CaTiO3 diffuse into the K0.5Na0.5NbO3 lattices to form a new solid solution with a perovskite structure. After the addition of LiSbO3 and CaTiO3, the cubic-tetragonal and tetragonal-orthorhombic phase transitions shift to lower temperatures. Coexistence of the orthorhombic and tetragonal phases is hence formed in the ceramics with 0.03 < x < 0.07 at room temperature, leading to a significant enhancement of the piezoelectric properties. For the ceramics with x = 0.04–0.06, the piezoelectric properties become optimum: d 33 = 172–253 pC/N, k P = 49.9–55.5%, k t = 49.2–52.1% and T C = 348–373 °C. The ceramic with x = 0.04 also exhibits a good thermal stability of piezoelectric properties.


Tetragonal Phasis Piezoelectric Property Piezoelectric Ceramic Good Piezoelectric Property Conventional Ceramic Fabrication Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Projects of Education Department of Sichuan Province (08ZA047), and Science and Technology Bureau of Sichuan Province (09ZQ026-059).


  1. 1.
    L. Egerton, D.M. Dillom, J. Am. Ceram. Soc. 42, 438 (1959)CrossRefGoogle Scholar
  2. 2.
    R. Zuo, X. Fang, C. Ye, Appl. Phys. Lett. 90, 092904 (2007)CrossRefADSGoogle Scholar
  3. 3.
    Y. Guo, K. Kakimoto, H. Ohsato, Appl. Phys. Lett. 85, 4121 (2004)CrossRefADSGoogle Scholar
  4. 4.
    H.Y. Park, C.W. Ahn, H.C. Song, J.H. Lee, S. Nahm, K. Uchino, H.G. Lee, H.J. Lee, Appl. Phys. Lett. 89, 062906 (2006)CrossRefADSGoogle Scholar
  5. 5.
    D. Lin, K.W. Kwok, H.L.W. Chan, J. Appl. Phys. 101, 074111 (2007)CrossRefADSGoogle Scholar
  6. 6.
    R. Zuo, D. Lv, J. Fu, Y. Liu, L. Li, J. Alloys Compd. 476, 836 (2009)CrossRefGoogle Scholar
  7. 7.
    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamur, Nature 432, 84 (2004)CrossRefPubMedADSGoogle Scholar
  8. 8.
    H. Du, W. Zhou, F. Luo, D. Zhu, S. Qu, Z. Pei, J. Appl. Phys. 104, 034104 (2008)CrossRefADSGoogle Scholar
  9. 9.
    M. Matsubara, T. Yamaguchi, W. Sakamoto, K. Kikuta, T. Yogo, S. Hirano, J. Am. Ceram. Soc. 88, 1190 (2005)CrossRefGoogle Scholar
  10. 10.
    M. Matsubaba, T. Yamaguichi, K. Kikuta, S. Hirano, Jpn. J. Appl. Phys. 44, 6136 (2005)CrossRefADSGoogle Scholar
  11. 11.
    T.R. Shrout, S. Zhang, J. Electroceram. 19, 111 (2007)Google Scholar
  12. 12.
    D. Lin, K.W. Kwok, H.L.W. Chan, J. Am. Ceram. Soc. 90, 1458 (2007)CrossRefGoogle Scholar
  13. 13.
    H.Y. Park, K.H. Cho, D.S. Paik, S. Nahm, H.G. Lee, D.H. Kim, J. Appl. Phys. 102, 124101 (2007)CrossRefADSGoogle Scholar
  14. 14.
    Y. Guo, K. Kakimoto, H. Ohsato, J. Phys. Chem. Solid 65, 1831 (2004)CrossRefADSGoogle Scholar
  15. 15.
    B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (Academic Press, London and New York, 1971), p. 135Google Scholar
  16. 16.
    K. Higashide, K. Kakimoto, H. Ohsato, J. Eur. Ceram. Soc. 27, 4107 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Qiaoji Zheng
    • 1
  • Dunmin Lin
    • 1
  • Xiaochun Wu
    • 1
  • Chenggang Xu
    • 1
  • Chun Yang
    • 1
  • K. W. Kwok
    • 2
  1. 1.College of Chemistry and Materials Science, and Visual Computing and Virtual Reality Key Laboratory of Sichuan ProvinceSichuan Normal UniversityChengduPeople’s Republic of China
  2. 2.Department of Applied Physics and Materials Research CentreThe Hong Kong Polytechnic UniversityKowloonPeople’s Republic of China

Personalised recommendations