Optical and electrical properties of Mg x Zn1−x O thin films by sol–gel method

  • Jia Li
  • Jin-Hua Huang
  • Wei-Jie Song
  • Rui-Qin Tan
  • Ye Yang
  • Xiao-Min Li


Mg x Zn1−x O (0 ≤ x ≤ 0.35) thin films have been deposited by sol–gel technique and the composition related structural, electrical, and optical properties are investigated. All the films have hexagonal wurtzite structure and the separation of MgO phase occurs when x = 0.3 and 0.35. With the increase of Mg content, the densification of the films decrease and band gap values increase. The maximum band gap value reaches 3.56 eV when x = 0.15. After Mg doping the conductivities of the Mg x Zn1−x O films are reduced greatly and the electrical current–voltage (IV) characteristics show nonlinearity for x > 0.15.


Monoethanolamine Zinc Acetate Dihydrate Alloy Thin Film Pulse Laser Deposition Method Quartz Glass Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the “Hundred Talents Program,” the Chinese Academy of Sciences, the Zhejiang Natural Science Foundation (Y407364), and the Ningbo Natural Science Foundation (No. 2007A610027, No. 2008A610047, No. 2009A610018). The authors would give thanks to the all measurers of XRD, SEM and UV–vis absorption spectroscopy of Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences.


  1. 1.
    H. Yang, Y. Li, D.P. Norton, Appl. Phys. Lett. 86, 172103 (2005)CrossRefADSGoogle Scholar
  2. 2.
    H. Tampo, H. Shibata, K. Matsubara, Appl. Phys. Lett. 89, 132113 (2006)CrossRefADSGoogle Scholar
  3. 3.
    Q.X. Guo, T. Tanaka, M. Nishio, Jpn. J. Appl. Phys. 46, 560 (2007)CrossRefADSGoogle Scholar
  4. 4.
    S. Shigehiko, H. Takeo, K. Motoki, IEEE. Electron. Device. Lett. 28, 543 (2007)CrossRefADSGoogle Scholar
  5. 5.
    K. Kazuto, T. Daisuke, K. Motoki, Japan. J. Appl. Phys. 46, 865 (2007)CrossRefGoogle Scholar
  6. 6.
    A.K. Sharma, J. Narayan, J.F. Muth, Appl. Phys. Lett. 75, 3327 (1999)CrossRefADSGoogle Scholar
  7. 7.
    Y.N. He, J.W. Zhang, Microelectronics J. 36, 125 (2005)CrossRefGoogle Scholar
  8. 8.
    Z. Vashaei, T. Minegishi, T. Yao, J. Cryst. Growth 306, 269 (2007)CrossRefADSGoogle Scholar
  9. 9.
    R. Ghost, D. Basak, J. Appl. Phys. 101, 023507 (2007)CrossRefADSGoogle Scholar
  10. 10.
    R. Ghost, D. Basak, J. Mater. Sci. Mater. Electron. 18, 141 (2007)CrossRefGoogle Scholar
  11. 11.
    M.X. Qiu, Z.Z. Ye, H.P. He, Appl. Phys. Lett. 90, 182116 (2007)CrossRefADSGoogle Scholar
  12. 12.
    J.F. Sarver, F.L. Katnack, F.A. Hummel, J. Electrochem. Soc. 106, 960 (1959)CrossRefGoogle Scholar
  13. 13.
    A. Ohtomo, M. Kawasaki, T. Koida, Appl. Phys. Lett. 72, 2466 (1998)CrossRefADSGoogle Scholar
  14. 14.
    W.I. Park, G.C. Yi, H.M. Jang, Appl. Phys. Lett. 79, 2022 (2001)CrossRefADSGoogle Scholar
  15. 15.
    M.S. Wang, E.J. Kim, S. Kim, Thin Solid Films 516, 1124 (2008)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jia Li
    • 1
    • 2
  • Jin-Hua Huang
    • 1
  • Wei-Jie Song
    • 1
  • Rui-Qin Tan
    • 3
  • Ye Yang
    • 1
  • Xiao-Min Li
    • 2
  1. 1.Ningbo Institute of Material Technology and EngineeringChinese Acedemy of SciencesNingboPeople’s Republic of China
  2. 2.Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiPeople’s Republic of China
  3. 3.College of Information Science and EngineeringNingbo UniversityNingboPeople’s Republic of China

Personalised recommendations