Advertisement

Electrical properties of the CdS/InP solar cell for photovoltaic applications

  • A. A. Ibrahim
Article

Abstract

n-CdS/p-InP solar cells have been prepared by deposition of n-CdS thin films using thermal evaporation technique onto p-type InP <100>. The I–V characteristics of the CdS/InP heterojunctions in dark condition were studied in the 298–350 K temperatures range for charge transport mechanism investigation. It has been established that in the entire temperatures range, the charge transport mechanism is determined by recombination processes in the depletion region. The CdS/InP heterojunction solar cells obtained using this technique and characterized under illumination condition have showed a conversion efficiency of 11% at Isc = 10 mA/cm2, Voc = 0.7 V.

Keywords

Versus Characteristic Heterojunction Solar Cell Direct Bandgap Indium Phosphide AuZn 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P.D. Mumford, M. Cahay, J. Appl. Phys. 79, 2176 (1996)CrossRefADSGoogle Scholar
  2. 2.
    P.D. Mumford, M. Cahay, J. Appl. Phys. 84, 2754 (1998)CrossRefADSGoogle Scholar
  3. 3.
    S. Shanthi, C. Subramanaian, P. Ramasamy, Mater. Chem. Phys. 58, 44 (1999)CrossRefGoogle Scholar
  4. 4.
    H. Uda, S. Ikegami, J. Appl. Phys. 29, 30 (1990)CrossRefGoogle Scholar
  5. 5.
    J. Versluys, P. Clauws, P. Nollet, S. Degrave, M. Burgelman, Thin Solid Films 431–432, 248 (2003)Google Scholar
  6. 6.
    W.C. Joo, A. Bhupathiraju, M.-A. Hasan, J.M. Lannon, J. Cryst. Growth 255, 1 (2003)CrossRefGoogle Scholar
  7. 7.
    P. Nollet, M. Kontges, M. Burgelman, S. Degrave, R. Reineke-Koch, Thin Solid Films 431–432, 414 (2003)CrossRefGoogle Scholar
  8. 8.
    H.H. Abu-Safe, M. Hossain, H. Naseem, W. Brown, A. Dhafiri, J. Electron. Mater. 32, 128 (2004)CrossRefADSGoogle Scholar
  9. 9.
    R. Lozada-Morales, O. Zelaya-Angel, Cryst. Res. Technol. 39(12), 1115 (2004)CrossRefGoogle Scholar
  10. 10.
    M. Purica, E. Budianu, E. Rusu, P. Arabadji, Thin Solid Films 511–512, 468 (2006)CrossRefGoogle Scholar
  11. 11.
    K. Zweibel, Prog. Photovolt. 3, 279 (1995)Google Scholar
  12. 12.
    A.E. Rakhshani, A.S. Al-Azab, J. Phys.: Condens. Matter. 12, 8745 (2000)CrossRefADSGoogle Scholar
  13. 13.
    A. Ashour, N. El-Kadry, S.A. Mahmoud, Vacuum 46, 1419 (1995)CrossRefGoogle Scholar
  14. 14.
    A. Ashour, J. Opt. Adv. Mat. 8, 1447 (2006)Google Scholar
  15. 15.
    H. Mimura, Y. Hatanaka, J. Appl. Phys. 71, 2315 (1992)CrossRefADSGoogle Scholar
  16. 16.
    A. Ashour, A.A. Ramadana, K. Abd EL-Hady, A.A.S. Akl, J. Opt. Adv. Mat. 7, 1493 (2005)Google Scholar
  17. 17.
    A.A. Ibrahim, A. Ashour, J. Mater. Sci.: Mater. Electron. 17, 835 (2006)CrossRefGoogle Scholar
  18. 18.
    S. Darwish, H.S. Soliman, A.S. Riad, Thin Solid Films 259, 248 (1995)CrossRefADSGoogle Scholar
  19. 19.
    J.J.B. Prasad, D.K. Rao, J. Sobhanadri, J. Appl. Phys. 59, 2866 (1985)CrossRefADSGoogle Scholar
  20. 20.
    S.K. Das, G.C. Morris, Sol Energy Mater.: Sol C 28, 305 (1993)CrossRefGoogle Scholar
  21. 21.
    A.S. Riad, S. Darwish, H.H. Afify, Thin Solid Films 391, 109 (2001)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceMinia UniversityMiniaEgypt

Personalised recommendations