Advertisement

The effect of post-annealing under CdCl2 atmosphere on the properties of ITO thin films deposited by DC magnetron sputtering

  • Shenghao Wang
  • Jingquan Zhang
  • Bo Wang
  • Lianghuan Feng
  • Yaping Cai
  • Lili Wu
  • Wei Li
  • Zhi Lei
  • Bing Li
Article

Abstract

Indium tin oxide (ITO) films deposited by DC magnetron sputtering were annealed under CdCl2 atmosphere at different temperatures. The effects of CdCl2 heat-treatment on the structural, electrical and optical properties of the films were investigated. The X-ray diffraction measurement proves the annealing results in a change of preferred orientation from (400) to (222). It is found the resistivity increases from 1.49 × 10−4 Ω cm of the as-deposited film to 6.82 × 10−4 Ω cm of the film annealed at 420 °C. The optical energy gap for the film varies from 3.97 to 3.89 eV. It is also found that the CdCl2 heat-treatment results in narrowing the energy gap of ITO film.

Keywords

Carrier Concentration In2O3 Hall Mobility Thin Film Solar Cell CdTe Thin Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors gratefully acknowledge the Chinese Ministry of Science and Technology for financial support under construct 2003AA513010.

References

  1. 1.
    C. Lee, R.P. Dwivedi, W. Lee, C. Hong, W.I. Lee, H.W. Kim, J. Mater. Sci. Mater. Electron. 19, 981 (2008). doi: 10.1007/s10854-007-9430-2 CrossRefGoogle Scholar
  2. 2.
    A.N. Tiwari, A. Romeo, D. Baetzner, H. Zogg, Prog. Photovolt: Res. Appl. 9, 211–215 (2001). doi: 10.1002/pip.374 CrossRefGoogle Scholar
  3. 3.
    J. Herrero, C. Guillén, Vacuum 67, 611 (2002). doi: 10.1016/S0042-207X(02)00261-0 CrossRefGoogle Scholar
  4. 4.
    D. Kim, S. Kim, Surf. Coat. Technol. 176, 23 (2003). doi: 10.1016/S0257-8972(03)00514-0 CrossRefGoogle Scholar
  5. 5.
    J. Fritsche, T. Schulmeyer, A. Thißen, A. Klein, W. Jaegermann, Thin Solid Films 431–432, (2003) doi: 10.1016/S0040-6090(03)00269-4 (267–271)
  6. 6.
    F.H. Seymour, V. Kaydanov, T.R. Ohno, D. Albin, Appl. Phys. Lett. 87, 153507 (2005). doi: 10.1063/1.2099515 CrossRefADSGoogle Scholar
  7. 7.
    P.R. Edwardsa, K. Durosea, J. Beierb, M. Campob, D. Bonnetb, Thin Solid Films. 387, 189–191 (2001). doi: 10.1016/S0040-6090(00)01706-5 CrossRefADSGoogle Scholar
  8. 8.
    Joint Committee on Power Diffraction Standards (JCPDS), Card No. 06-0416Google Scholar
  9. 9.
    E. Terzini, P. Thilakan, C. Minarini, Mater. Sci. Eng. B 77, 110 (2000). doi: 10.1016/S0921-5107(00)00477-3 CrossRefGoogle Scholar
  10. 10.
    C.G. Choi, K. No, W. Lee, H. Kim, S.O. Jung, W.J. Lee, W.S. Kim, S.J. Kim, C. Yoon, Thin Solid Films 258, 274–278 (1995). doi: 10.1016/0040-6090(94)06354-0 CrossRefADSGoogle Scholar
  11. 11.
    A.M. Gheidari, F. Behafarid, G. Kavei, M. Kazemzad, Mater. Sci. Eng. B 136, 37–40 (2007). doi: 10.1016/j.mseb.2006.08.058 CrossRefGoogle Scholar
  12. 12.
    R.B.H. Tahar, T. Ban, Y. Ohya, Y. Takahashi, J. Appl. Phys. 83, 2631 (1998). doi: 10.1063/1.367025 CrossRefADSGoogle Scholar
  13. 13.
    H.N. Cui, V. Teixeira, L.J. Meng, E. Fortunato, Proc. of SPIE 6034, 603407 (2006). doi: 10.1117/12.668090 CrossRefGoogle Scholar
  14. 14.
    S.A. Knickerbocker, A.K. Kulkarni, J. Vac. Sci. Technol. A 14, 757–761 (1996). doi: 10.1116/1.580384 CrossRefADSGoogle Scholar
  15. 15.
    S. Ray, R. Banerjee, N. Basu, A.K. Batabyal, A.K. Barua, J. Appl. Phys. 54, 3497 (1983). doi: 10.1063/1.332415 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Shenghao Wang
    • 1
  • Jingquan Zhang
    • 1
  • Bo Wang
    • 1
  • Lianghuan Feng
    • 1
  • Yaping Cai
    • 1
  • Lili Wu
    • 1
  • Wei Li
    • 1
  • Zhi Lei
    • 1
  • Bing Li
    • 1
  1. 1.College of Materials Science and EngineeringSichuan UniversityChengduPeople’s Republic of China

Personalised recommendations