Effect of post annealing on structural and optical properties of ZnO thin films deposited by vacuum coating technique



We report the effect of annealing temperature on structural, electrical and optical properties of polycrystalline zinc oxide thin films grown on p-type silicon (100) and glass substrates by vacuum coating technique. The XRD and AFM measurements confirmed that the thin films grown by this technique have good crystalline hexagonal wurtzite structures and homogenous surfaces. The study also reveals that the rms value of thin film roughness increases from 6 to 16 nm, the optical band gap increases from 3.05 to 3.26 eV and resistivity from 0.3 to 5 Ωcm when the post-deposition annealing temperature is changed from 400 to 600 °C. It is observed that ZnO thin film annealed at 600 °C after deposition provide a smooth and flat texture suited for optoelectronic applications.


Atomic Force Microscope Atomic Force Microscope Image Post Deposition Annealing Sheet Resistivity Thin Film Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank Prof. D. Pandey, School of Materials Science and Technology, Institute of Technology, Banaras Hindu University, Varanasi, India, for helpful discussions.


  1. 1.
    S.Y. Hu, Y.C. Lee, J.W. Lee, J.C. Huang, J.L. Shen, W. Water. Appl. Surf. Sci. 254, 1578 (2008). doi: 10.1016/j.apsusc.2007.07.134 CrossRefADSGoogle Scholar
  2. 2.
    L. Zhang, H. Zhang, Y. Bai, J.W. Ma, J. Cao, X.Y. Jiang, Z.L. Zhang, Solid. State. Commun. 146, 387 (2008). doi: 10.1016/j.ssc.2008.03.036 CrossRefADSGoogle Scholar
  3. 3.
    M. Bouderbala, S. Hamzaoui, B. Amrani, H. Ali, M. Reshak, M. Adnane, T. Sahraoui, M. Zerdali, Physica. B 403, 3326 (2008). doi: 10.1016/j.physb.2008.04.045 CrossRefADSGoogle Scholar
  4. 4.
    B.J. Norris, J. Anderson, J.F. Wager, D.A. Keszler, J. Phys., D. Appl. Phys. (Berl) 36, L105 (2003)CrossRefADSGoogle Scholar
  5. 5.
    R.L. Hoffman, B.J. Norris, J.F. Wager, Appl. Phys. Lett. 82, 733 (2003). doi: 10.1063/1.1542677 CrossRefADSGoogle Scholar
  6. 6.
    H.S. Bae, S. Im, J. Vac. Sci. Technol. B 22(3), 1191 (2004). doi: 10.1116/1.1756166 CrossRefGoogle Scholar
  7. 7.
    K. Remashan, J.H. Jang, D.K. Hwang, S.J. Park, Appl. Phys. Lett. 91, 182101 (2007). doi: 10.1063/1.2804566 CrossRefADSGoogle Scholar
  8. 8.
    E. Fortunato, P. Barquinha, A. Pimentel, A. Goncalves, A. Marques, L. Pereira, R. Martins, Thin. Solid. Films. 487, 205 (2005). doi: 10.1016/j.tsf.2005.01.066 CrossRefADSGoogle Scholar
  9. 9.
    W.J.E. Beek, M.M. Wienk, R.A.J. Janssen, J. Mater. Chem. 15, 2985 (2005). doi: 10.1039/b501979f CrossRefGoogle Scholar
  10. 10.
    S. Mandal, M.L.N. Goswami, K. Das, A. Dhar, S.K. Ray, Thin. Solid. Films. 516, 8702 (2005). doi: 10.1016/j.tsf.2008.05.016 CrossRefADSGoogle Scholar
  11. 11.
    G. Srinivasan, J. Kumar, Cryst. Res. Technol. 41, 893 (2006). doi: 10.1002/crat.200510690 CrossRefGoogle Scholar
  12. 12.
    D. Yuvaraj, K. Narasimha Rao, Vacuum 82, 1274 (2008). doi: 10.1016/j.vacuum.2008.03.043 CrossRefGoogle Scholar
  13. 13.
    J.G. Lu, T. Kawaharamura, H. Nishinka, Y. Kamada, T. Ohshima, S. Fujita, J. Cryst. Growth. 299, 1 (2007). doi: 10.1016/j.jcrysgro.2006.10.251 CrossRefADSGoogle Scholar
  14. 14.
    V.R. Shinde, T.P. Gujar, C.D. Lokhande, Sol. Energy Mater. Sol. Cells 91, 1055 (2007). doi: 10.1016/j.solmat.2007.02.017 CrossRefGoogle Scholar
  15. 15.
    M. Purica, E. Budianu, E. Rusu, M. Danila, R. Gavrila, Thin. Solid. Films. 403–404, 485 (2002). doi: 10.1016/S0040-6090(01)01544-9 CrossRefGoogle Scholar
  16. 16.
    K.S. KIM, H.W. KIM, J. Korean. Physical. Soc. 42, S149 (2003)Google Scholar
  17. 17.
    W.Z. Xu, Z.Z. Ye, Y.J. Zeng, L.P. Zhu, B.H. Zhao, L. Jiang, J.G. Lu, H.P. He, S.B. Zhang, Appl. Phys. Lett. 88, 173506 (2006)CrossRefADSGoogle Scholar
  18. 18.
    K. Prabakar, C. Kim, C. Lee, Cryst. Res. Technol. 40, 1150 (2005). doi: 10.1002/crat.200410508 CrossRefGoogle Scholar
  19. 19.
    B.D. Yao, Y.F. Chan, N. Wang, Appl. Phys. Lett. 81, 22 (2002). doi: 10.1063/1.1495878 CrossRefADSGoogle Scholar
  20. 20.
    V. Srikant, D.R. Clarke, J. Appl. Phys. 83, 5447 (1998). doi: 10.1063/1.367375 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Centre for Research in Microelectronics, Department of Electronics Engineering, Institute of TechnologyBanaras Hindu UniversityVaranasiIndia
  2. 2.School of Materials Science and Technology, Institute of TechnologyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations