Advertisement

Correlation of luminescent properties of ZnO and Eu doped ZnO nanorods

  • Yuming Yang
  • Hua Lai
  • Chunyan Tao
  • Hua Yang
Article

Abstract

ZnO and ZnO:Eu nanorods were originally synthesized by concussion method. The nanorods present a wurtzite nanostructure with dispersive distribution morphology. The average diameter and length of the nanorods are about 80 nm and 2 μm, respectively. The best concussion time, concussion frequency, the function of HMT and the growth mechanism are presented in this paper. This method is simple, economical, and environmentally mild. We believe other kinds of ZnO nanostructures could be obtained by this method when appropriate agents are added. However, because of the different chemical properties between trivalent RE ions and the cations of ZnO, it is rather difficult to incorporate RE ions into the lattice of semiconductors effectively via a wet chemical method. Based on our experiments, the sample of \( {\text{ZnO}}:{\text{Eu}}^{3 + }_{1\% } \) is single-phase and its PL signal is stronger than other single-phase \( {\text{ZnO}}:{\text{Eu}}^{3 + }_{X} \) samples. So 1% content of Eu3+ was chosen as the best doping concentration.

Keywords

Airtight Container Zinc Nitrate Hexahydrate Zinc Hydroxide Hydroxide Anion Europium Nitrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work is supported by National Natural Science Foundation of China (NSFC).

References

  1. 1.
    T.M. Williams, D. Hunter, A.K. Pradhan, I.V. Kityk, Photoinduced piezo-optical effect in Er doped ZnO films. Appl. Phys. Lett. (2006). doi: 10.1063/1.2236211
  2. 2.
    A.P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots. Science (1996). doi: 10.1126/science.271.5251.933
  3. 3.
    Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One-dimensional nanostructures: synthesis, characterization and applications. Adv. Mater. 15, 353–389 (2003). doi: 10.1002/adma.200390087 CrossRefGoogle Scholar
  4. 4.
    J. Zhang, L. Sun, J. Yin, H. Su, C. Liao, C. Yan, Control of ZnO morphology via a simple solution route. Chem. Mater. 14, 4172–4177 (2002). doi: 10.1021/cm020077h CrossRefGoogle Scholar
  5. 5.
    J. Geng, D. Lu, J. Zhu, H. Chen, Antimony(III)-doped PbWO4 crystals with enhanced photoluminescence via a shape-controlled sonochemical route. J. Phys. Chem. B 110, 13777–13785 (2006). doi: 10.1021/jp057562v CrossRefPubMedGoogle Scholar
  6. 6.
    Y.C. Kong, D.P. Yu, B. Zhang, W. Fang, S.Q. Feng, Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach. Appl. Phys. Lett. 78, 407–409 (2001). doi: 10.1063/1.1342050 CrossRefADSGoogle Scholar
  7. 7.
    M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Room-temperature ultraviolet nanowire nanolasers. Science 292(5523), 1897–1899 (2001)CrossRefPubMedADSGoogle Scholar
  8. 8.
    M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, Catalytic growth of zinc oxide nanwires by vapor transport. Adv. Mater. 13, 113–116 (2001)CrossRefGoogle Scholar
  9. 9.
    B.D. Yao, Y.F. Chan, N. Wang, Formation of ZnO nanostructures by a simple way of thermal evaporation. Appl. Phys. Lett. 81, 757 (2002)CrossRefADSGoogle Scholar
  10. 10.
    J. Yang, W. Wang, Y. Ma, D.Z. Wang, D. Steeves, B. Kimball, Z.F. Ren, High throughput growth of zinc oxide Nanowires from zinc powder with the assistance of sodium chloride. J. Nanosci. Nanotechnol. 6, 2196–2199 (2006)CrossRefPubMedGoogle Scholar
  11. 11.
    J. Jie, G. Wang, Y. Chen, X. Han, Q. Wang, B. Xu, Synthesis and optical properties of well-aligned ZnO nanorod array on an undoped ZnO film. (2005). doi: 10.1063/1.1854737
  12. 12.
    S.Y. Li, P. Lin, C.Y. Lee, T.Y. Tseng, Field emission and photofluorescent characteristics of zinc oxide nanowires synthesized by a metal catalyzed vapor–liquid–solid process. J. Appl. Phys. 95, 3711 (2004)CrossRefADSGoogle Scholar
  13. 13.
    B. Liu, H.C. Zeng, Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J. Am. Chem. Soc. 125(15), 4430–4431 (2003)CrossRefPubMedGoogle Scholar
  14. 14.
    M. Guo, P. Diao, S. Cai, The effect of hydrothermal growth temperature on preparation and photoelectrochemical performance of ZnO nanorod array films. J.Solid State Chem. 178, 1864 (2005)CrossRefADSGoogle Scholar
  15. 15.
    W.I. Park, Y.H. Jun, S.W. Jung, G.-C. Yi, Excitonic emissions observed in ZnO single crystal nanorods. Appl. Phys. Lett. 82, 964 (2003)CrossRefADSGoogle Scholar
  16. 16.
    A.B. Hartanto, X. Ning, Y. Nakata, T. Okada, Growth mechanism of ZnO nanorods from nanoparticles formed in a laser ablation plume. Appl. Phys. A 78, 299 (2003)CrossRefADSGoogle Scholar
  17. 17.
    W.D. Yu, X.M. Li, X.D. Gao, Self-catalytic synthesis and photoluminescence of ZnO nanostructures on ZnO nanocrystal substrates. Appl. Phys. Lett. 84, 2658 (2004)CrossRefADSGoogle Scholar
  18. 18.
    H. Yan, R. He, J. Pham, P. Yang, Morphologies of one-dimensional of ZnO nano- and micro-crystals. Adv. Mater. 15, 402–405 (2003)CrossRefGoogle Scholar
  19. 19.
    Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting oxides. Science 291, 1947 (2001)CrossRefPubMedADSGoogle Scholar
  20. 20.
    H. Yan, J. Johnson, M. Law, R. He, K. Knutsen, J.R. McKinney, J. Pham, R. Saykally, P. Yang, ZnO nanoribbon microcavity lasers. Adv. Mater. 15, 1907 (2003)CrossRefGoogle Scholar
  21. 21.
    Y.B. Li, Y. Bando, T. Sato, K. Kurashima, ZnO nanobelts grown on Si substrate. Appl. Phys. Lett. 81, 144 (2002)CrossRefADSGoogle Scholar
  22. 22.
    M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001)CrossRefPubMedADSGoogle Scholar
  23. 23.
    J.C. Johnson, H. Yan, P. Yang, R.J. Saykally, Optical cavity effects in ZnO nanowire lasers and waveguides. J. Phys. Chem B 107, 8816–8828 (2003)CrossRefGoogle Scholar
  24. 24.
    H. Kind, H. Yan, B. Messer, M. Law, P. Yang, Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 14, 158–160 (2002)CrossRefGoogle Scholar
  25. 25.
    X. Gou, G. Wang, J. Yang, J. Park, D. Wexler, Chemical synthesis, characterisation and gas sensing performance of copper oxide nanoribbons. Chem. 18, 965–969 (2008)Google Scholar
  26. 26.
    M. Law, L.E. Greene, J.C. Jhonson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455–459 (2005)CrossRefPubMedADSGoogle Scholar
  27. 27.
    H. Yan, R. He, J. Pham, P. Yang, Morphologies of one-dimensional of ZnO nano- and microcrystals. Adv. Mater. 15, 402–405 (2003)CrossRefGoogle Scholar
  28. 28.
    Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting oxides. Science 291, 1947 (2001)CrossRefPubMedADSGoogle Scholar
  29. 29.
    H. Yan, J. Johnson, M. Law, R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, P. Yang, ZnO nanoribbon microcavity Lasers. Adv. Mater. 15, 1907–1911 (2003)CrossRefGoogle Scholar
  30. 30.
    Y.B. Li, Y. Bando, T. Sato, K. Kurashima, ZnO nanobelts grown on Si substrate. Appl. Phys. Lett. 81, 144 (2002)CrossRefADSGoogle Scholar
  31. 31.
    W.I. Park, Y.H. Jun, S.W. Jung, G.-C. Yi, Excitonic emissions observed in ZnO single crystal nanorods. Appl. Phys. Lett. 82, 964 (2003)CrossRefADSGoogle Scholar
  32. 32.
    A.B. Hartanto, X. Ning, Y. Nakata, T. Okada, Growth mechanism of ZnO nanorods from nanoparticles formed in a laser ablation plume. Appl. Phys. A 78, 299 (2003)CrossRefADSGoogle Scholar
  33. 33.
    M. Guo, P. Diao, S. Cai, The effect of hydrothermal growth temperature on preparation and photoelectrochemical performance of ZnO nanorod array films. J. Solid State Chem. 178, 3210–3215 (2005)CrossRefADSGoogle Scholar
  34. 34.
    Z. Fan, C. Pai-chun, J.G. Lu, Photoluminescence and polarized photodetection of single ZnO nanowires. Adv. Mater. 15, 838 (2004)Google Scholar
  35. 35.
    J.Y. Lao, J.G. Wen, Z.F. Ren, Hierarchical ZnO nanostructures. Nano Lett. 2, 1287–1291 (2002)CrossRefADSGoogle Scholar
  36. 36.
    J.Y. Lao, J.Y. Huang, D.Z. Wang, Z.F. Ren, ZnO nanobridges and nanonails. Nano Lett. 3, 235–238 (2003)CrossRefADSGoogle Scholar
  37. 37.
    Y.J. Xing, Z.H. Xi, X.D. Zhang, J.H. Song, R.M. Wang, J. Xu, Z.Q. Xue, D.P. Yu, Nanotubular structures of zinc oxide. Solid State Commun. 129, 671 (2004)CrossRefADSGoogle Scholar
  38. 38.
    J.-H. Park, H.-J. Choi, Y.-J. Choi, S.-H. Sohn, J.-G. Park, Ultrawide ZnO nanosheets. J. Mater. Chem. 14, 35–36 (2004)CrossRefGoogle Scholar
  39. 39.
    X.Y. Kong, Z.L. Wang, Spontaneous polarization-induced nanohelixes, nanosprings,and nanorings of piezoelectric nanobelts. Nano Lett. 3, 1625 (2003)CrossRefADSGoogle Scholar
  40. 40.
    K.S. Suslick, D.A. Hammerton, R.E. Cline Jr., Sonochemical hot spot. J. Am. Chem. Soc. 108(18), 5641–5642 (1986)CrossRefGoogle Scholar
  41. 41.
    V.G. Pol, R. Reisfeld, Gedanken, Sonochemical synthesis and optical properties of europium oxide nanolayer coated on Titania. A. Chem. Mater. 14, 3920–3924 (2002)CrossRefGoogle Scholar
  42. 42.
    H. Destaillats, T.M. Lesko, M. Knowlton, H. Wallace, M.R. Hoffmann, Scale-up of sonochemical reactors for water treatment. Ind. Eng. Chem. Res. 40(18), 3855–3860 (2001)CrossRefGoogle Scholar
  43. 43.
    T.J. Mason, Sonochemistry (Oxford University Press, New York, 1999), p. 16Google Scholar
  44. 44.
    L. Xu, Q. Chen, D. Xu, Hierarchical ZnO nanostructures obtained by electrodeposition. J. Phys. Chem. C 111, 11560–11565 (2007)CrossRefGoogle Scholar
  45. 45.
    I.S. Ahuja, C.L. Yadava, R. Singh, Solution-grown zinc oxide nanowires. J. Mol. Struct. 81, 229–234 (1982)CrossRefADSGoogle Scholar
  46. 46.
    C.Y. Chang, L.J. Chen, ZnO nanoneedles with enhanced and sharp ultraviolet cathodoluminescence peak. J. Phys. Chem. C 111(3), 1268–1272 (2007)CrossRefGoogle Scholar
  47. 47.
    Z. Wang, X.F. Qian, J. Yin, Z.K. Zhu, Large-scale fabrication of tower-like, flower-like, and tube-like ZnO. Langmuir 20, 3441–3448 (2004)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.College of ChemistryJilin UniversityChangchunPeople’s Republic of China
  2. 2.Key Laboratory for Supramolecular Structure and Materials of Ministry of EducationJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations