Advertisement

Effects of annealing temperature and thickness on microstructure and properties of sol–gel derived multilayer Al-doped ZnO films

  • Hua Wang
  • Muhui Xu
  • Jiwen Xu
  • Ling Yang
  • Shangju Zhou
Article

Abstract

Transparent conductive multilayer Al-doped ZnO (AZO) films were prepared by the spin-on technique with rapid thermal annealing process at low temperature. The effects of annealing temperature and thickness on microstructure, growth behavior, electrical properties and optical properties of AZO films were investigated. It was found that AZO films exhibited stronger preferred c-axis-orientation, the electrical resistivity decreased as it would be expected with the increase of annealing temperature from 400 to 500 °C and the increase of the number of layers in the film from 1 to 6, but the electrical resistivity tended to keep at a certain lowest value of 2.7 × 10−4 Ω cm when the annealing temperature was above 500 °C and the number of layers did not exceed 6. The average optical transmittance of AZO films was over 90% when number of layers in the film did not exceed 4 and decreased as this number increases, but the annealing temperature had little effect on the average optical transmittance of AZO films.

Keywords

Electrical Resistivity Rapid Thermal Annealing Film Layer Transparent Conductive Oxide Orientation Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors wish to acknowledge the financial support of the program for 100 Young and Middle-aged Disciplinary Leaders in Guangxi Higher Education Institutions under contract no. RC20060809014.

References

  1. 1.
    R. Khanna, K. Ip, K. Allums, K. Baik, C. Abernathy, S. Pearton, Y. Heo, D. Norton, F. Ren, A.S. Shojah, R. Wilkins, J. Electron. Mater. 34, 395 (2005). doi: 10.1007/s11664-005-0117-2 CrossRefADSGoogle Scholar
  2. 2.
    T. Yamamoto, Thin Solid Films 420–421, 100 (2002). doi: 10.1016/S0040-6090(02)00655-7 CrossRefGoogle Scholar
  3. 3.
    V. Vaithianathan, B.T. Lee, S.S. Kim, Appl. Phys. Lett. 86, 062101 (2005). doi: 10.1063/1.1854748 CrossRefADSGoogle Scholar
  4. 4.
    H. Kim, J.S. Horwitz, S.B. Qadri, D.B. Chrisey, Thin Solid Films 420–421, 107 (2002). doi: 10.1016/S0040-6090(02)00658-2 CrossRefGoogle Scholar
  5. 5.
    S.S. Lin, J.L. Huang, P. Sajgalik, Surf. Coat. Tech. 190, 39 (2005). doi: 10.1016/j.surfcoat.2004.03.009 CrossRefGoogle Scholar
  6. 6.
    G.J. Fang, D.J. Li, B.L. Yao, J. Cryst. Growth. 247, 393 (2003). doi: 10.1016/S0022-0248(02)02012-2 CrossRefADSGoogle Scholar
  7. 7.
    M.J. Alam, D.C. Cameron, J. Vac. Sci. Technol. A 19, 1642 (2001)ADSGoogle Scholar
  8. 8.
    B. Houng, C.J. Huang, Surf. Coat. Tech. 201, 3188 (2006). doi: 10.1016/j.surfcoat.2006.06.043 CrossRefGoogle Scholar
  9. 9.
    J.H. Lee, B.O. Park, Thin Solid Films 426, 94 (2003). doi: 10.1016/S0040-6090(03)00014-2 CrossRefADSGoogle Scholar
  10. 10.
    K.M. Lin, P. Tsai, Thin Solid Films 515, 8601 (2007). doi: 10.1016/j.tsf.2007.04.012 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Hua Wang
    • 1
    • 2
  • Muhui Xu
    • 1
  • Jiwen Xu
    • 1
    • 2
  • Ling Yang
    • 1
  • Shangju Zhou
    • 1
  1. 1.Department of Information Materials Science and EngineeringGuilin University of Electronic TechnologyGuilinChina
  2. 2.Guangxi Key Laboratory of Information MaterialsGuilin University of Electronic TechnologyGuilinChina

Personalised recommendations