Sol–gel ZnO in organic transistor-based non-volatile memory

  • Tianyi Wu
  • Kean C. Aw
  • Noviana Tjitra Salim
  • Wei Gao


There are many types of non-volatile memory devices but they are generally constructed from silicon. With the development of transparent organic thin film transistors, there is a need to also develop memory devices to allow the complete integration of digital circuitries. The aim of this research is to develop a fabrication route of an all-solution processing of optically transparent organic field effect transistor-based non-volatile memory (OFET-NVM). The OFET-NVMs can be programmed and erased at a relatively low voltage (±15 V). The OFET-NVM has a charge mobility of 0.125 cm2/V-s, threshold voltage shift of approximately 3 V between programmed and erased transistor and a sub-threshold slope of 1.5 V/decade. Although these figure-of-merits are not comparable to its silicon counterpart, the creation of an all solution processed OFET-NVM that is optically transparent (~70–85%) has been demonstrated.


Pentacene Solid State Drive Organic Thin Film Transistor Floating Gate Inversion Mode 


  1. 1.
    P. Pavan, R. Bez, P. Olivo, E. Zanoni, in Proceedings of the IEEE, vol. 85 (1997), pp. 1248–1271Google Scholar
  2. 2.
    A. Sawa, Mater. Today. 11(6), 28–36 (2008). doi: 10.1016/S1369-7021(08)70119-6 CrossRefGoogle Scholar
  3. 3.
    W. Welnic, M. Wuttig, Mater. Today. 11(6), 20–27 (2008). doi: 10.1016/S1369-7021(08)70118-4 CrossRefGoogle Scholar
  4. 4.
    J. Jo, T.-M. Lee, J.-S. Yu, C.-H. Kim, D.-S. Kim, E.-S. Lee, M. Esashi, Sens. Mater. 19, 487–496 (2007)Google Scholar
  5. 5.
    C.D. Dimitrakopoulos, D.J. Mascaro, IBM J. Res. Develop. 45, 11–27 (2001)CrossRefGoogle Scholar
  6. 6.
    P. Liu, Y. Wu, Y. Li, B.S. Ong, S. Zhu, J. Am. Chem. Soc. 128, 4554–4555 (2006). doi: 10.1021/ja060620l CrossRefPubMedGoogle Scholar
  7. 7.
    T.P. Alexander, T.J. Bukowski, G. Teowee, D.R. Uhlmann, K.C. McCarthy, J. Dawley, B.J.J. Zelinski, in Proceedings of the IEEE International Symposium on Applications of Ferroelectrics, vol. 2 (1996), pp. 585–588Google Scholar
  8. 8.
    Q. Yu, H. Yang, W. Fu, L. Chang, J. Xu, C. Yu, R. Wei, K. Du, H. Zhu, M. Li, G. Zou, Thin. Solid. Films. 515, 3840–3843 (2007). doi: 10.1016/j.tsf.2006.10.077 CrossRefADSGoogle Scholar
  9. 9.
    G. He, J.H, Cai, G, Ni, Mater. Chem. Phys. 110, 110–114 (2008). doi: 10.1016/j.matchemphys.2008.01.023 CrossRefGoogle Scholar
  10. 10.
    A. Afzali, C.D. Dimitrakopoulos, T.L. Breen, J. Am. Chem. Soc. 124, 8812–8813 (2002). doi: 10.1021/ja0266621 CrossRefPubMedGoogle Scholar
  11. 11.
    K.D. Schroder, Advanced MOS devices. (Addison-Wesley, 1987)Google Scholar
  12. 12.
    E. Orgiua, I. Manunzaa, M. Sannaa, P. Cosseddua, A. Bonfiglioa, Thin. Solid. Films. 516, 1533–1573 (2008). doi: 10.1016/j.tsf.2007.03.157 CrossRefADSGoogle Scholar
  13. 13.
    X.-H. Zhang, S.M. Lee, B. Domercq, B. Kippelen, Appl. Phys. Lett. 92, 243307 (2008). doi: 10.1063/1.2940232 CrossRefADSGoogle Scholar
  14. 14.
    T. Cahyahi, J.N. Tey, S.G. Mhaisalkar, F. Boey, V.R. Rao, R. Lal, Z.H. Huang, G.J. Qi, Z.-K. Chen, C.M. Ng, Appl. Phys. Lett. 90, 122112 (2007). doi: 10.1063/1.2715030 CrossRefADSGoogle Scholar
  15. 15.
    S.K. Park, T.N. Jackson, J.E. Anthony, D.A. Mourey, Appl. Phys. Lett. 91, 063514 (2007). doi: 10.1063/1.2768934 CrossRefADSGoogle Scholar
  16. 16.
    A. Facchetti, J. Sanghyun, D. Janes, B. Jones, M. Wasielewski, T.J. Marks, Proceeding of Flexible Electronics and Displays Conference and Exhibition, (2008) pp. 1–7Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Tianyi Wu
    • 1
  • Kean C. Aw
    • 1
  • Noviana Tjitra Salim
    • 2
  • Wei Gao
    • 2
  1. 1.Mechanical EngineeringThe University of AucklandAucklandNew Zealand
  2. 2.Chemical and Materials EngineeringThe University of AucklandAucklandNew Zealand

Personalised recommendations