Annealing behavior of TiO2-sheathed Ga2O3 nanowires

  • Changhyun Jin
  • Hyunsoo Kim
  • Kyungjoon Baek
  • Hyoun Woo Kim
  • Chongmu Lee


TiO2-sheathed Ga2O3 one-dimensional (1D) nanostructures were synthesized by thermal evaporation of GaN powders and then sputter-deposition of TiO2. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis results indicate that the Ga2O3 cores are of a single crystal nature with a monoclinic structure while the TiO2 shells are amorphous. Photoluminescence (PL) emission is slightly decreased in intensity by TiO2 coating, but it is significantly increased by thermal annealing in an oxygen atmosphere. The emission peak is also shifted from ~500 to ~550 nm by oxygen annealing. The increase in the green emission is due to the increase in the concentration of the Ga vacancies in the cores by the inflow of oxygen during oxygen annealing. On the other hand, annealing in a nitrogen atmosphere leads to a red shift of the emission to ~700 nm originating from nitrogen doping.


TiO2 High Resolution Transmission Electron Microscopy Ga2O3 Shell Layer TiO2 Coating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported by Korean Science and Engineering Foundation (KOSEF) through the 2007 National Research Laboratory (NRL) Program.


  1. 1.
    H.W. Kim, S.H. Shim, C. Lee, Mater. Sci. Eng. B 136, 148 (2007)CrossRefGoogle Scholar
  2. 2.
    H.H. Tippins, Phys. Rev. A 140, 316 (1965)CrossRefADSGoogle Scholar
  3. 3.
    N. Yamazoe, Sens. Actuators B 5, 7 (1991)CrossRefGoogle Scholar
  4. 4.
    G. Gundiah, A. Govindaraj, C.N.R. Rao, Chem. Phys. Lett. 351, 189 (2002)CrossRefADSGoogle Scholar
  5. 5.
    H.Z. Zhang, Y.C. Kong, Y.Z. Wang, X. Du, Z.G. Bai, J.J. Wang, D.P. Yu, Y. Ding, Q.L. Hang, S.Q. Feng, Solid State Commun. 109, 677 (1999)CrossRefADSGoogle Scholar
  6. 6.
    B.C. Kim, K.T. Su, K.S. Park, K.J. Im, T. Noh, M.Y. Sung, S. Kim, Appl. Phys. Lett. 89, 479 (2002)CrossRefADSGoogle Scholar
  7. 7.
    Y.H. Gao, Y. Bando, T. Sato, Appl. Phys. Lett. 81, 2267 (2002)CrossRefADSGoogle Scholar
  8. 8.
    C.C. Tang, S.S. Fan, M.L. de la Chapelle, P. Li, Chem. Phys. Lett. 333, 12 (2001)CrossRefADSGoogle Scholar
  9. 9.
    N.H. Kim, H.W. Kim, C. Seoul, C. Lee, Mater. Sci. Eng. B 111, 131 (2004)CrossRefGoogle Scholar
  10. 10.
    H.J. Choi, J.C. Johnson, R. He, S.K. Lee, F. Kim, P. Pauzauskie, J. Globerger, R.J. Saykally, P. Yang, J. Phys Chem. B 107, 8721 (2003)CrossRefGoogle Scholar
  11. 11.
    B. Min, J.S. Lee, J.W. Hwang, K.H. Kim, M.I. Kang, K. Cho, M.Y. Sung, S. Kim, M.-S. Lee, S.O. Park, J.T. Moon, J. Cryst. Growth 252, 565 (2003)CrossRefADSGoogle Scholar
  12. 12.
    B. Liu, H.C. Zeng, J. Phys. Chem. B 108, 5867 (2004)CrossRefGoogle Scholar
  13. 13.
    S. Han, C. Li, Z.Q. Liu, B. Lei, D.H. Zhang, W. Jin, X.L. Liu, T. Tang, C.W. Zhou, Nano Lett. 4, 1241 (2004)CrossRefADSGoogle Scholar
  14. 14.
    A. Pan, S. Wang, R. Liu, C. Li, B. Zou, Small 1, 1058 (2005)CrossRefPubMedGoogle Scholar
  15. 15.
    T. Harwig, F. Kellendouk, J. Solid State Chem. 24, 255 (1978)CrossRefADSGoogle Scholar
  16. 16.
    V.I. Vasil’tsiv, Y.M. Zakharko, Y.I. Prim, Ukr. Fiz. Zh. 33, 255 (1988)Google Scholar
  17. 17.
    L. Binet, D. Gourier, J. Phys. Chem. Solidas 59, 1241 (1995)CrossRefADSGoogle Scholar
  18. 18.
    E.G. Villora, T. Atou, T. Sekiguchi, T. Sugawara, M. Kikuchi, T. Fukuda, Solid State Communications 120, 455 (2001)CrossRefADSGoogle Scholar
  19. 19.
    H.W. Kim, S.H. Shim, Thin Solid Films 515, 5158 (2007)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Changhyun Jin
    • 1
  • Hyunsoo Kim
    • 1
  • Kyungjoon Baek
    • 1
  • Hyoun Woo Kim
    • 1
  • Chongmu Lee
    • 1
  1. 1.Department of Materials Science and EngineeringInha UniversityIncheonSouth Korea

Personalised recommendations