Hybrid carbon nanotube and dye-doped liquid crystal material for holographic imaging

  • M. E. Abbasov
  • S. Ghosh
  • A. Quach
  • G. O. Carlisle


Without the application of AC or DC electric fields, we recorded permanent holographic images in a hybrid material based on the nematic liquid crystal E7, doped with 0.6% Methyl Red (MR) and 0.002% single-wall carbon nanotubes (CNTs). The images were recorded using a 488-nm laser and reconstructed using 488, 532 and 633-nm probe beams. Multi-order diffraction patterns were observed, during image storage and reconstruction, for thin films having thicknesses of 15 μm. The quality and diffraction efficiency were higher for the hybrid cells than for cells doped only with MR. Average first-order diffraction efficiencies of 7.1 and 3.7% were found for the hybrid and MR-only doped cells, respectively. The primary objective of this study was to utilize the molecular properties of MR and CNTs to produce a hybrid material with improved holographic properties. Dynamics of image formation and a proposed CNT-enhancement mechanism are presented. The holograms are robust and have remained stable for over 2 years.


Probe Beam Diffraction Efficiency Holographic Image Liquid Crystal Material Homeotropic Alignment 



This research was supported by The Welch Foundation under Grant No. AE-0025 and Killgore Research Center.


  1. 1.
    I.C. Khoo, S. Slussarenko, B.D. Guenther, M.-Y. Shih, P. Chen, W.V. Wood, Opt. Lett. 23, 253 (1998)CrossRefPubMedADSGoogle Scholar
  2. 2.
    D.J. Chen, J.C. Timmons, J. Org. Chem. 68, 5745 (2003)Google Scholar
  3. 3.
    L. Lucchetti, M. Gentili, F. Simoni, Appl. Phys. Lett. 86, 151117 (2005)CrossRefADSGoogle Scholar
  4. 4.
    A.Y.G. Fuh, C.C. Lioa, K.C. Hsu, C.L. Lu, C.Y. Tsia, Opt. Lett. 26, 1767 (2001)CrossRefPubMedADSGoogle Scholar
  5. 5.
    L. Song, W.-K. Lee, X. Wang, Opt. Exp. 14, 2197 (2006)CrossRefADSGoogle Scholar
  6. 6.
    W. Lee, S.-L. Yeh, Appl. Phys. Lett. 79, 4488 (2001)CrossRefADSGoogle Scholar
  7. 7.
    S.E. San, O. Köysal, F.N. Ecevit, S. Özder, D. Dvornikov, Sythn. Met. 142, 283 (2004)Google Scholar
  8. 8.
    O. Köysal, S.E. San, Sythn. Met. 158, 527 (2008)CrossRefGoogle Scholar
  9. 9.
    S. Ghosh, G.O. Carlisle, J. Mater. Sci. Mater. Elect. 16, 753 (2005)CrossRefGoogle Scholar
  10. 10.
    I. Dierking, G. Scalia, P. Morales, D. Leclere, Adv. Mater. 16, 865 (2004)CrossRefGoogle Scholar
  11. 11.
    M.D. Lynch, D.L. Patrick, Nano. Lett. 2, 1197 (2002)CrossRefADSGoogle Scholar
  12. 12.
    L. Frey, M. Kaczmarek, J.-M. Jonathan, G. Roosen, Opt. Mater. 18, 91 (2001)CrossRefADSGoogle Scholar
  13. 13.
    M. Kaczmarek, M.-Y. Shih, R.S. Cudney, I.C. Khoo, IEEE J. Quant. Electron. 38, 451 (2002)CrossRefADSGoogle Scholar
  14. 14.
    W. Lee, H.Y. Chen, S.L. Yeh, Opt. Exp. 10, 482 (2002)ADSGoogle Scholar
  15. 15.
    Y.S. Suleiman, S. Ghosh, M.E. Abbasov, G.O. Carlisle, J. Mater. Sci: Mater. Elect. 19, 662 (2008)CrossRefGoogle Scholar
  16. 16.
    M.E. Abbasov, G.O. Carlisle, J. Nanophoton. 2, 023510 (2008)CrossRefGoogle Scholar
  17. 17.
    S.S. Gong, D. Christensen, J. Zhang, C.H. Wang, J. Phys. Chem. 91, 4504 (1987)CrossRefGoogle Scholar
  18. 18.
    E. Mohajerani, E. Heydari, in Proceedings of the SPIE, ed. by J. Wang, C. Lee, H. Wang, 6828 (2007) 682818Google Scholar
  19. 19.
    Z. Zhou, Y. Jiang, C. Hou, B. Yuan, X. Sun, Opt. Laser Eng. 35, 233 (2001)CrossRefGoogle Scholar
  20. 20.
    H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969)Google Scholar
  21. 21.
    L. Komitov, C. Ruslim, Y. Matsuzawa, K. Ichimura, Liq. Cryst. 27, 1011 (2000)CrossRefGoogle Scholar
  22. 22.
    A. Sygula, F.R. Fronczek, R. Sygula, P.W. Rabideau, M.M. Olmsted, J. Am. Chem. Soc. 129, 3842 (2007)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • M. E. Abbasov
    • 1
  • S. Ghosh
    • 1
  • A. Quach
    • 1
  • G. O. Carlisle
    • 1
  1. 1.Department of PhysicsWest Texas A&M UniversityCanyonUSA

Personalised recommendations