ZnTiO3-based ceramics sintered at low temperature with boron addition for multilayer ceramic capacitor applications



Mixture of zinc metatitanate and rutile (ZnTiO3 + 0.2TiO2), had been prepared via the conventional solid-state reaction method. The sintering behavior and microwave dielectric properties of ZnO–TiO2 system were investigated. The composition and microstructure of ceramics were discussed with XRD and SEM. It was found that ZnO–TiO2 ceramics, which was sintered at 900°C using 1.0 wt% B2O3 as sintering additive, had homogeneously fine microstructures and high densification. Samples possessed excellent microwave dielectric properties: ε r = 26, Q × f = 34,890 GHz, and τ f = −11 ppm/°C. The above- mentioned material was suitable for the tape casting process and compatible with Ag electrodes, therefore, was an excellent candidate for multilayer ceramic capacitor applications.


TiO2 Sinter Temperature B2O3 Microwave Dielectric Property Liquid Phase Sinter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Ph.D. Programs Foundation of the Ministry of Education of China under Grant 20070561019, by the Province Science and Technology of Guangdong under Grant 2007B010600006, and by the Guangdong-Hong Kong Technology Cooperation Funding Scheme (TCFS) under Grant 2007A090604004.


  1. 1.
    S.P. Wu, X.H. Ding, IEEE T. Adv. Pack. 30(3), 434–438 (2007). doi: 10.1109/TADVP.2007.898512 CrossRefGoogle Scholar
  2. 2.
    S.P. Wu, IEEE T. Compon. Pack. T. 29(4), 827–832 (2006). doi: 10.1109/TCAPT.2006.885963 CrossRefGoogle Scholar
  3. 3.
    S.P. Wu, Mater. Chem. Phys. 89(2–3), 423–427 (2005). doi: 10.1016/j.matchemphys.2004.09.026 Google Scholar
  4. 4.
    A. Golovchanski, H.T. Kim, Y.H. Kim, J. Korean Phys. Soc. 32(2), 1167–1169 (1998)Google Scholar
  5. 5.
    H.T. Kim, S.H. Kim, J.D. Byun, J. Am. Ceram. Soc. 82(11), 3043–3048 (1999)Google Scholar
  6. 6.
    Q.L. Zhang, H. Yang, J.L. Zou, H.P. Mater. Lett. 59, 880–884 (2005). doi: 10.1016/j.matlet.2004.11.036 CrossRefGoogle Scholar
  7. 7.
    K. Haga, T. Ishii, J.-I. Mashiyama, T. Ikeda, Jpn. J. Appl. Phys. 31(9B), 3156–3159 (1992). doi: 10.1143/JJAP.31.3156 CrossRefADSGoogle Scholar
  8. 8.
    A. Chaouchi, S. Marinel, M. Aliouat, S. d’Astorg, J. Euro. Ceram. Soc. 27, 2561–2566 (2007). doi: 10.1016/j.jeurceramsoc.2006.09.015 CrossRefGoogle Scholar
  9. 9.
    Y.-L. Chai, Y.-S. Chang, Y.-j. Hsiao, Y.-C. Lian, Mater. Res. Bull. 43(2), 257–263 (2008). doi: 10.1016/j.materresbull.2007.03.016 CrossRefGoogle Scholar
  10. 10.
    B. Li, Z. Yue, L. Li, J. Mater. Sci. 13, 415 (2002). doi: 10.1007/BF00647787 Google Scholar
  11. 11.
    H.T. Kim, S. Nahm, J.D. Byum, J. Am. Ceram. Soc. 82(12), 3476–3480 (1999)CrossRefGoogle Scholar
  12. 12.
    W.-H. Lee, Chi-Yi, C.-L. Huang, Y.-C. Lee, C.-L. Hu, J. Yang, T. Yang, S.-P. Lin, Jpn. J. Appl. Phys. 44(12), 8519–8524 (2005). doi: 10.1143/JJAP.44.8519 CrossRefADSGoogle Scholar
  13. 13.
    M. Valant, D. Suvorov, J. Am. Ceram. Soc. 83(11), 2721–2729 (2000)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhouChina
  2. 2.Shenzhen Zhenhua Ferrite & Ceramic Electronics Co., LTDShenzhenChina

Personalised recommendations