Advertisement

Effects of La occupation site on the dielectric and piezoelectric properties of [Bi0.5(Na0.75K0.15Li0.10)0.5]TiO3 ceramics

  • Ying Yuan
  • Shuren Zhang
  • Xiaohua Zhou
Article

Abstract

The crystal structure, phase transition and ferroelectric (FE)/piezoelectric properties were investigated for three types of La-doped [Bi0.5(Na0.75K0.15Li0.10)0.5]TiO3 ceramics. The dielectric measurements showed that the transition between FE and antiferroelectric (AFE) phases near 180 °C became pronounced by La addition, and the maximum permittivity was observed at 360 °C in La-doped samples, whereas at 290 °C in non-doped samples. Normal FE and excellent piezoelectric properties were observed by PE hysteresis loop and piezoelectric measurements in samples without vacancy. However, when the A-site or B-site vacancies were formed, the temperature range of AFE phase extended even appeared at room temperature, which resulted in the presence of deformed PE curves and decrease of piezoelectric properties. It was suggested that the AFE phase originated from the decoupling effect between BO6 octahedra in ABO3 perovskites due to the A-site and/or B-site vacancies.

Keywords

Bi2O3 Piezoelectric Property NaNbO3 Sodium Titanate TiO3 Ceramic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G.A. Smolenshii, V.A. Isupo, A.I. Agranovskaya, Sov. Phys. Solid State (Engl. Transl.) 2, 2651 (1961)Google Scholar
  2. 2.
    T. Takenaka, K. Maruyama, K. Sakata, Jpn. J. Appl. Phys. 30, 2236 (1991). doi: 10.1143/JJAP.30.2236 CrossRefADSGoogle Scholar
  3. 3.
    S. Kuharuangrong, W. Schulze, J. Am. Ceram. Soc. 79, 1273 (1996). doi: 10.1111/j.1151-2916.1996.tb08584.x CrossRefGoogle Scholar
  4. 4.
    T. Takenaka, K. Sakata, K. Toda, Ferroelectrics 106, 375 (1990)Google Scholar
  5. 5.
    T. Wada, K. Toyoike, Y. Imanaka, Jpn. J. Appl. Phys. 40, 5703 (2001). doi: 10.1143/JJAP.40.5703 CrossRefADSGoogle Scholar
  6. 6.
    H. Nagata, M. Yoshida, Y. Makjuchi, Jpn. J. Appl. Phys. 42, 7401 (2003). doi: 10.1143/JJAP.42.7401 CrossRefADSGoogle Scholar
  7. 7.
    Y.M. Li, W. Chen, Q. Xu, Ceram. Int. 33, 95 (2007). doi: 10.1016/j.ceramint.2005.08.001 CrossRefGoogle Scholar
  8. 8.
    D.M. Lin, D.Q. Xiao, J.G. Zhu, Mater. Lett. 58, 615 (2004). doi: 10.1016/S0167-577X(03)00580-9 CrossRefGoogle Scholar
  9. 9.
    H. Nagata, T. Takenaka, Jpn. J. Appl. Phys. 36, 6055 (1997). doi: 10.1143/JJAP.36.6055 CrossRefADSGoogle Scholar
  10. 10.
    A. Herabut, A. Safari, J. Am. Ceram. Soc. 80, 2954 (1997). doi: 10.1111/j.1151-2916.1997.tb03219.x CrossRefGoogle Scholar
  11. 11.
    H.D. Li, C.D. Feng, P.H. Xiang, Jpn. J. Appl. Phys. 42, 7387 (2003). doi: 10.1143/JJAP.42.7387 CrossRefADSGoogle Scholar
  12. 12.
    X.X. Wang, H.L. Chan, C.L. Choy, Solid State Commun. 125, 395 (2003). doi: 10.1016/S0038-1098(02)00816-5 CrossRefADSGoogle Scholar
  13. 13.
    Y. Yuan, S.R. Zhang, X.H. Zhou, J. Mater. Sci. Lett. 41, 565 (2006)ADSGoogle Scholar
  14. 14.
    K. Sakata, Y. Masuda, Ferroelectrics 7, 347 (1974). doi: 10.1080/00150197408238042 CrossRefGoogle Scholar
  15. 15.
    C.S. Tu, I.G. Siny, V.H. Schmidt, Phys. Rev. B 49, 11550 (1994). doi: 10.1103/PhysRevB.49.11550 CrossRefADSGoogle Scholar
  16. 16.
    J. Suchanicz, Ferroelectrics 172, 455 (1995). doi: 10.1080/00150199508018512 CrossRefGoogle Scholar
  17. 17.
    J.K. Lee, J.Y. Yi, K.S. Hong, J. Appl. Phys. 96, 1174 (2004). doi: 10.1063/1.1760842 CrossRefADSGoogle Scholar
  18. 18.
    T.Y. Kim, H.M. Jang, Appl. Phys. Lett. 77, 3824 (2000). doi: 10.1063/1.1330218 CrossRefADSGoogle Scholar
  19. 19.
    N.W. Thomas, J. Phys. Chem. Solids 51, 1419 (1990). doi: 10.1016/0022-3697(90)90025-B CrossRefADSGoogle Scholar
  20. 20.
    X.H. Dai, A. Digiovanni, D. Viehland, J. Appl. Phys. 74, 3399 (1993). doi: 10.1063/1.354567 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.State Key Laboratory of Electronic Thin Film and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China

Personalised recommendations