Advertisement

A quantitative characterization of the optical absorption spectrum associated with hydrogenated amorphous silicon

  • Farida Orapunt
  • Stephen K. O’Leary
Article

Abstract

We propose a quantitative means of characterizing the optical absorption spectrum associated with an amorphous semiconductor. In particular, for a representative hydrogenated amorphous silicon optical absorption experimental data set, through a series of least-squares linear fits of an exponential function to this experimental data set, taken over a number of optical absorption ranges, we determine how the breadth of the optical absorption tail varies along the optical absorption spectrum of hydrogenated amorphous silicon. We find that the quantitative variations in the breadth of the optical absorption tail that are found provide for a clear delineation between the different regions of the optical absorption spectrum of hydrogenated amorphous silicon. We complete this analysis by theoretically determining the form of the optical absorption spectrum using a recently developed empirical model for the density of states functions corresponding to hydrogenated amorphous silicon, this analysis providing a theoretical basis for the interpretation of our results.

Keywords

Optical Absorption Amorphous Silicon Optical Absorption Spectrum Amorphous Semiconductor Tail State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors wish to thank the Natural Sciences and Engineering Research Council of Canada for financial support. The use of equipment loaned from the Canadian Microelectronics Corporation, and equipment granted from the Canada Foundation for Innovation, is gratefully acknowledged.

References

  1. 1.
    M. Zeman, R.A.C.M.M. van Swaaij, J.W. Metselaar, R.E.I. Schropp, J. Appl. Phys. 88, 6436 (2000)CrossRefADSGoogle Scholar
  2. 2.
    S.O. Kasap, J.A. Rowlands, Proc. IEEE 90, 591 (2002)CrossRefGoogle Scholar
  3. 3.
    K. Weiser, M.H. Brodsky, Phys. Rev. B 1, 791 (1970)CrossRefADSGoogle Scholar
  4. 4.
    M.H. Brodsky, R.S. Title, K. Weiser, G.D. Pettit, Phys. Rev. B 1, 2632 (1970)CrossRefADSGoogle Scholar
  5. 5.
    G.D. Cody, T. Tiedje, B. Abeles, B. Brooks, Y. Goldstein, Phys. Rev. Lett. 47, 1480 (1981)CrossRefADSGoogle Scholar
  6. 6.
    T. Datta, J.A. Woollam, Phys. Rev. B 39, 1953 (1989)CrossRefADSGoogle Scholar
  7. 7.
    D. Dasgupta, F. Demichelis, C.F. Pirri, A. Tagliaferro, Phys. Rev. B 43, 2131 (1991)CrossRefADSGoogle Scholar
  8. 8.
    K. Morigaki, Physics of Amorphous Semiconductors (Imperial College and World Scientific, Singapore, 1999)Google Scholar
  9. 9.
    S.K. O’Leary, B.J. Fogal, D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, J. Non-Cryst. Solids 290, 57 (2001)CrossRefGoogle Scholar
  10. 10.
    B.J. Fogal, S.K. O’Leary, D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, Solid State Commun. 120, 429 (2001)CrossRefADSGoogle Scholar
  11. 11.
    J. Singh, Nonlinear Optic. Princ. Mater. Phenom. Dev. 29, 119 (2002)Google Scholar
  12. 12.
    D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, B.J. Fogal, S.K. O’Leary, Solid State Commun. 122, 271 (2002)CrossRefADSGoogle Scholar
  13. 13.
    J. Singh, K. Shimikawa, Advances in Amorphous Semiconductors (CRC Press, Boca Raton, 2003)Google Scholar
  14. 14.
    F. Orapunt, S.K. O’Leary, Appl. Phys. Lett. 84, 523 (2004)CrossRefADSGoogle Scholar
  15. 15.
    L.-L. Tay, D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, F. Orapunt, S.K. O’Leary, Appl. Phys. Lett. 88, 121920 (2006)CrossRefADSGoogle Scholar
  16. 16.
    G.D. Cody, in Hydrogenated Amorphous Silicon, edited by J.I. Pankove, Semiconductors and Semimetals, vol. 21B (Academic, New York, 1984), p. 11Google Scholar
  17. 17.
    D.L. Wood, J. Tauc, Phys. Rev. B 5, 3144 (1972)CrossRefADSGoogle Scholar
  18. 18.
    S.K. O’Leary, S. Zukotynski, J.M. Perz, Phys. Rev. B 51, 4143 (1995)CrossRefADSGoogle Scholar
  19. 19.
    S.K. O’Leary, S. Zukotynski, J.M. Perz, Phys. Rev. B 52, 7795 (1995)CrossRefADSGoogle Scholar
  20. 20.
    S.K. O’Leary, L.S. Sidhu, S. Zukotynski, J.M. Perz, Can. J. Phys. 74, S256 (1996)Google Scholar
  21. 21.
    S.K. O’Leary, S.R. Johnson, P.K. Lim, J. Appl. Phys. 82, 3334 (1997)CrossRefADSGoogle Scholar
  22. 22.
    L. Jiao, I. Chen, R. W. Collins, C. R. Wronski, N. Hata, Appl. Phys. Lett. 72, 1057 (1998)CrossRefADSGoogle Scholar
  23. 23.
    S.K. O’Leary, S.M. Malik, J. Appl. Phys. 92, 4276 (2002)CrossRefADSGoogle Scholar
  24. 24.
    S.M. Malik, S.K. O’Leary, J. Non-Cryst. Solids 336, 64 (2004)CrossRefADSGoogle Scholar
  25. 25.
    S.K. O’Leary, J. Mater. Sci: Mater. Electron. 15, 401 (2004)CrossRefGoogle Scholar
  26. 26.
    S.M. Malik, S.K. O’Leary, Appl. Phys. Lett. 80, 790 (2002)CrossRefADSGoogle Scholar
  27. 27.
    Z. Remeš, Ph.D. Thesis, Charles University, Prague, 1999Google Scholar
  28. 28.
    C.B. Roxlo, B. Abeles, C.R. Wronski, G.D. Cody, T. Tiedje, Solid State Commun. 47, 985 (1983)CrossRefADSGoogle Scholar
  29. 29.
    S. John, C. Soukoulis, M.H. Cohen, E.N. Economou, Phys. Rev. Lett. 57, 1777 (1986)PubMedCrossRefADSGoogle Scholar
  30. 30.
    G.D. Cody, J. Non-Cryst. Solids 141, 3 (1992)CrossRefADSGoogle Scholar
  31. 31.
    S.K. O’Leary, P.K. Lim, Appl. Phys. A 66, 53 (1998)CrossRefADSGoogle Scholar
  32. 32.
    W.B. Jackson, S.M. Kelso, C.C. Tsai, J.W. Allen, S.-J. Oh, Phys. Rev. B 31, 5187 (1985)CrossRefADSGoogle Scholar
  33. 33.
    S.K. O’Leary, Appl. Phys. Lett. 82, 2784 (2003)CrossRefADSGoogle Scholar
  34. 34.
    T.M. Mok, S.K. O’Leary, J. Appl. Phys. 102, 113525 (2007)CrossRefADSGoogle Scholar
  35. 35.
    J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15, 627 (1966)CrossRefGoogle Scholar
  36. 36.
    J. Singh, J. Mater. Sci.: Mater. Electron. 14, 171 (2003)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Faculty of EngineeringUniversity of ReginaReginaCanada
  2. 2.Department of Electrical and Computer EngineeringUniversity of WindsorWindsorCanada

Personalised recommendations