Secondary electron emission from nanocomposite carbon films

  • Adolfo González-Berríos
  • Vladimir I. Makarov
  • Yamila Goenaga-Vázquez
  • Gerardo Morell
  • Brad R. Weiner


The secondary electron emission (SEE) properties of sulfur-incorporated nanocomposite carbon (n-C) films were studied. Maximum SEE yield (δ max) values obtained ranged from 3.27 to 6.98, which are between those for graphite (δ max ~ 1) and high purity diamond films in their as-grown condition (δ max ~ 9), and are consistent with the composite nature of the films. It was found that δ max values of n-C films are mostly determined by the atomic oxygen concentration on the surface of the films, which appears to control the probability of escape of the secondary electrons from the surface of the films, as inferred by employing Ascarelli’s model for SEE (J Appl Phys 89:689, 2001). Also, mean escape depth values for the secondary electrons were obtained using this model, and their significance as bulk parameters for the films is discussed.


Secondary Electron Diamond Film Secondary Electron Emission Escape Depth Nanocomposite Carbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Research supported in part by NASA Training Grant NNG05GG78H (PR Space Grant) and NASA Cooperative Agreements NNX07AO30A (PR NASA EPSCoR Core), and NASA Grant No. NNX08BA48A (NASA CNM URC). The authors would like to acknowledge Mr. Oscar Resto for his help with the SEE system, Dr. Esteban Fachini for XPS measurements, Dr. Ram Katiyar for Raman spectroscopy, and Dr. Carlos Cabrera for AFM.


  1. 1.
    D.M. Trucchi, C. Scilletta, E. Cappelli, P.G. Merli, S. Zoffoli, G. Mattei, P. Ascarelli, Diam. Relat. Mater. 15, 827 (2006). doi: 10.1016/j.diamond.2005.12.038 CrossRefGoogle Scholar
  2. 2.
    A. Shih, J. Yater, P. Pehrsson, J. Butler, C. Hor, R. Abrams, J. Appl. Phys. 82, 1860 (1997). doi: 10.1063/1.365990 CrossRefADSGoogle Scholar
  3. 3.
    J.E. Yater, A. Shih, J. Appl. Phys. 87, 8103 (2000). doi: 10.1063/1.373505 CrossRefADSGoogle Scholar
  4. 4.
    H.J. Hopman, J. Verhoeven, P.K. Bachmann, Diam. Relat. Mater. 9, 1238 (2000). doi: 10.1016/S0925-9635(99)00238-1 CrossRefGoogle Scholar
  5. 5.
    G. Morell, A. González-Berríos, B.R. Weiner, S. Gupta, J. Mater. Sci. Mater. Electron. 17, 443 (2006). doi: 10.1007/s10854-006-8090-y CrossRefGoogle Scholar
  6. 6.
    S. Gupta, B.R. Weiner, G. Morell, J. Mater. Res. 18, 363 (2003). doi: 10.1557/JMR.2003.0047 CrossRefADSGoogle Scholar
  7. 7.
    D.W. Marquardt, J. Soc. Ind. Appl. Math. 11, 431 (1963). doi: 10.1137/0111030 MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    R.J. Nemanich, J.T. Glass, G. Luckovsky, R.E. Schroder, J. Vac. Sci. Technol. A 6, 1783 (1988). doi: 10.1116/1.575297 CrossRefADSGoogle Scholar
  9. 9.
    P. Ascarelli, E. Cappelli, F. Pinzari, M.C. Rossi, S. Salvatori, P.G. Merli, A. Migliori, J. Appl. Phys. 89, 689 (2001). doi: 10.1063/1.1326854 CrossRefADSGoogle Scholar
  10. 10.
    S. Ruben, Handbook of the Elements (Open Court Publishing Company, La Salle, Illinois, 1985), p. 17Google Scholar
  11. 11.
    A. Shih, J.E. Yater, in Properties, Growth and Applications of Diamond, ed. by M.H. Nazaré, A.J. Neves (Inspec, London, 2001), pp. 82–91Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Adolfo González-Berríos
    • 1
    • 2
  • Vladimir I. Makarov
    • 3
  • Yamila Goenaga-Vázquez
    • 3
  • Gerardo Morell
    • 1
  • Brad R. Weiner
    • 3
  1. 1.Department of PhysicsUniversity of Puerto RicoSan JuanUSA
  2. 2.Department of Mathematics-PhysicsUniversity of Puerto Rico at CayeyCayeyUSA
  3. 3.Department of ChemistryUniversity of Puerto RicoSan JuanUSA

Personalised recommendations