Skip to main content
Log in

Secondary electron emission from nanocomposite carbon films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The secondary electron emission (SEE) properties of sulfur-incorporated nanocomposite carbon (n-C) films were studied. Maximum SEE yield (δ max) values obtained ranged from 3.27 to 6.98, which are between those for graphite (δ max ~ 1) and high purity diamond films in their as-grown condition (δ max ~ 9), and are consistent with the composite nature of the films. It was found that δ max values of n-C films are mostly determined by the atomic oxygen concentration on the surface of the films, which appears to control the probability of escape of the secondary electrons from the surface of the films, as inferred by employing Ascarelli’s model for SEE (J Appl Phys 89:689, 2001). Also, mean escape depth values for the secondary electrons were obtained using this model, and their significance as bulk parameters for the films is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D.M. Trucchi, C. Scilletta, E. Cappelli, P.G. Merli, S. Zoffoli, G. Mattei, P. Ascarelli, Diam. Relat. Mater. 15, 827 (2006). doi:10.1016/j.diamond.2005.12.038

    Article  CAS  Google Scholar 

  2. A. Shih, J. Yater, P. Pehrsson, J. Butler, C. Hor, R. Abrams, J. Appl. Phys. 82, 1860 (1997). doi:10.1063/1.365990

    Article  ADS  CAS  Google Scholar 

  3. J.E. Yater, A. Shih, J. Appl. Phys. 87, 8103 (2000). doi:10.1063/1.373505

    Article  ADS  CAS  Google Scholar 

  4. H.J. Hopman, J. Verhoeven, P.K. Bachmann, Diam. Relat. Mater. 9, 1238 (2000). doi:10.1016/S0925-9635(99)00238-1

    Article  CAS  Google Scholar 

  5. G. Morell, A. González-Berríos, B.R. Weiner, S. Gupta, J. Mater. Sci. Mater. Electron. 17, 443 (2006). doi:10.1007/s10854-006-8090-y

    Article  CAS  Google Scholar 

  6. S. Gupta, B.R. Weiner, G. Morell, J. Mater. Res. 18, 363 (2003). doi:10.1557/JMR.2003.0047

    Article  ADS  CAS  Google Scholar 

  7. D.W. Marquardt, J. Soc. Ind. Appl. Math. 11, 431 (1963). doi:10.1137/0111030

    Article  MATH  MathSciNet  Google Scholar 

  8. R.J. Nemanich, J.T. Glass, G. Luckovsky, R.E. Schroder, J. Vac. Sci. Technol. A 6, 1783 (1988). doi:10.1116/1.575297

    Article  ADS  CAS  Google Scholar 

  9. P. Ascarelli, E. Cappelli, F. Pinzari, M.C. Rossi, S. Salvatori, P.G. Merli, A. Migliori, J. Appl. Phys. 89, 689 (2001). doi:10.1063/1.1326854

    Article  ADS  CAS  Google Scholar 

  10. S. Ruben, Handbook of the Elements (Open Court Publishing Company, La Salle, Illinois, 1985), p. 17

    Google Scholar 

  11. A. Shih, J.E. Yater, in Properties, Growth and Applications of Diamond, ed. by M.H. Nazaré, A.J. Neves (Inspec, London, 2001), pp. 82–91

Download references

Acknowledgments

Research supported in part by NASA Training Grant NNG05GG78H (PR Space Grant) and NASA Cooperative Agreements NNX07AO30A (PR NASA EPSCoR Core), and NASA Grant No. NNX08BA48A (NASA CNM URC). The authors would like to acknowledge Mr. Oscar Resto for his help with the SEE system, Dr. Esteban Fachini for XPS measurements, Dr. Ram Katiyar for Raman spectroscopy, and Dr. Carlos Cabrera for AFM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adolfo González-Berríos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Berríos, A., Makarov, V.I., Goenaga-Vázquez, Y. et al. Secondary electron emission from nanocomposite carbon films. J Mater Sci: Mater Electron 20, 996–1000 (2009). https://doi.org/10.1007/s10854-008-9822-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-008-9822-y

Keywords

Navigation