Advertisement

Controllable synthesis and luminescence property of CePO4:Tb nanorods

  • Songzhu Lin
  • Yanlin Yuan
  • Haitao Wang
  • Ruokun Jia
  • Xiaofeng Yang
  • Shujun Liu
Article

Abstract

Highly luminescent Tb3+-doped CePO4 with 1D nanostructures were prepared by a simple hydrothermal method. The obtained CePO4:Tb has a hexagonal or monoclinic structure under different synthetical process. Uniform 1D nanorods with diameters between 40 and 500 nm, and the length ranging from several hundred nanometres to several micrometres were obtained. It is easy to increase the sizes of the samples by adding some CTAB. Results of the XPS show that there is no Ce4+ in the samples because of the absence of the signal around 917 eV, which is characteristic of Ce4+. The study of the photoluminescence of Tb3+-doped CePO4 indicates that the luminescent properties of these nanophosphors are strongly dependent on their structures and morphologies.

Keywords

CTAB Luminescent Property Excitation Peak Bulk Powder LaPO4 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Iijima, Nature 354, 56 (1991). doi: 10.1038/354056a0 CrossRefADSGoogle Scholar
  2. 2.
    G. Fanchini, S. Miller, L.B. Parekh, Nano. Lett. 8, 2716 (2008). doi: 10.1021/nl080563p CrossRefGoogle Scholar
  3. 3.
    G.D. Yuan, W.J. Zhang, J.S. Jie, Nano. Lett. 8, 2591 (2008). doi: 10.1021/nl073022t PubMedCrossRefADSGoogle Scholar
  4. 4.
    A.G. Macedo, D. Ananias, P.S. Andre, Nanotechnology 19, 295702 (2008). doi: 10.1088/0957-4484/19/29/295702 CrossRefGoogle Scholar
  5. 5.
    L.-H. Peng, Y.-C. Zhang, Y.-C. Lin, Appl. Phys. Lett. 78, 4 (2001). doi: 10.1063/1.1336815 CrossRefADSGoogle Scholar
  6. 6.
    X. Daun, Y. Hang, Y. Cui, J. Wang, C.M. Lieber, Nature 409, 66 (2001). doi: 10.1038/35051047 CrossRefADSGoogle Scholar
  7. 7.
    Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 291, 1947 (2001). doi: 10.1126/science.1058120 PubMedCrossRefADSGoogle Scholar
  8. 8.
    M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897 (2001). doi: 10.1126/science.1060367 PubMedCrossRefADSGoogle Scholar
  9. 9.
    Y.N. Xia, P.D. Yang, Adv. Mater. 15, 351 (2003). doi: 10.1002/adma.200390086 CrossRefGoogle Scholar
  10. 10.
    H. Maas, A. Currao, G. Calzaferri, Angew. Chem. Int. Ed. 41, 2495 (2002). doi:10.1002/1521-3773(20020715)41:14<2495::AID-ANIE2495>3.0.CO;2-GCrossRefGoogle Scholar
  11. 11.
    C. Feldmann, T. Jüstel, C.R. Ronda, P.J. Schmidt, Adv. Funct. Mater. 13, 511 (2003). doi: 10.1002/adfm.200301005 CrossRefGoogle Scholar
  12. 12.
    G. Gasparotto, S.A.M. Lima, M.R. Davolos, J. Lumin. 128, 1606 (2008). doi: 10.1016/j.jlumin.2008.03.005 CrossRefGoogle Scholar
  13. 13.
    Z.J. Cheng, H. Yang, Y.M. Cui, L.X. Yu, X.P. Zhao, S.H. Feng, J. Magn. Magn. Mater. 308, 5 (2007). doi: 10.1016/j.jmmm.2006.02.095 CrossRefADSGoogle Scholar
  14. 14.
    W. Li, J. Lee, J. Phys. Chem. C 112, 11679 (2008). doi: 10.1021/jp800101d CrossRefGoogle Scholar
  15. 15.
    C.H. Lu, J. Hu, Z.Z. Xu, J. Rare Earth (Waukesha) 25, 273 (2007)Google Scholar
  16. 16.
    E. Suljoti, M. Nagasona, A. Pietzscha, J. Chem. Phys. 128, 134706 (2008). doi: 10.1063/1.2876360 PubMedCrossRefADSGoogle Scholar
  17. 17.
    D. Bregirous, F. Audubert, T. Charpentier, Solid State Sci. 9, 432 (2007). doi: 10.1016/j.solidstatesciences.2007.03.019 CrossRefADSGoogle Scholar
  18. 18.
    J. Hölsä, M. Leskelä, L. Niinistö, J. Solid State Chem. 37, 267 (1981). doi: 10.1016/0022-4596(81)90486-2 CrossRefADSGoogle Scholar
  19. 19.
    D. Jia, W. Jia, X.-L. Wang, W.M. Yen, Solid State Commun. 129, 1 (2004). doi: 10.1016/j.ssc.2003.07.009 CrossRefADSGoogle Scholar
  20. 20.
    M.T. Jose, A.R. Lakshmanan, Opt. Mater. 24, 651 (2004). doi: 10.1016/S0925-3467(03)00180-0 CrossRefADSGoogle Scholar
  21. 21.
    J. Dexpert-Ghys, R. Mauricot, M.D.J. Faucher, J. Lumin. 69, 203 (1996). doi: 10.1016/S0022-2313(96)00094-4 CrossRefGoogle Scholar
  22. 22.
    W.H. Tang, T.L. Kam, S.M. So, J. Gao, X.M. Chen, C.X. Liu, Z.H. Mai, Mater. Res. Bull. 37, 2531 (2002). doi: 10.1016/S0025-5408(01)00781-4 CrossRefGoogle Scholar
  23. 23.
    K. Riwotzki, H. Meyssamy, H. Schnablegger, A. Kornowski, M. Haase, Angew. Chem. Int. Ed. 40, 573 (2001). doi:10.1002/1521-3773(20010202)40:3<573::AID-ANIE573>3.0.CO;2-0CrossRefGoogle Scholar
  24. 24.
    P. Schuetz, F. Caruso, Chem. Mater. 14, 4509 (2002). doi: 10.1021/cm0212257 CrossRefGoogle Scholar
  25. 25.
    S. Heer, O. Lehmann, M. Haase, H.U. Güdel, Angew. Chem. Int. Ed. 42, 3179 (2002). doi: 10.1002/anie.200351091 CrossRefGoogle Scholar
  26. 26.
    X.J. Wang, M.Y. Gao, J. Mater. Chem. 16, 21360 (2006)ADSMathSciNetGoogle Scholar
  27. 27.
    R.X. Yan, X.M. Sun, X. Wang, Q. Peng, Y.D. Li, Chem. Eur. J. 11, 2183 (2005). doi: 10.1002/chem.200400649 CrossRefGoogle Scholar
  28. 28.
    C.C. Huang, Y.W. Lo, W.S. Kuo, Langmuir 24, 8309 (2008). doi: 10.1021/la800847d PubMedCrossRefGoogle Scholar
  29. 29.
    H. Meyssamy, K. Riwotzki, A. Kornowski, S. Naused, M. Haase, Adv. Mater. 11, 840 (1999). doi:10.1002/(SICI)1521-4095(199907)11:10<840::AID-ADMA840>3.0.CO;2-2CrossRefGoogle Scholar
  30. 30.
    Y.-P. Fang, A.-W. Xu, R.-Q. Song, H.-X. Zhang, L.-P. You, J.C. Yu, H.-Q. Liu, J. Am. Chem. Soc. 125, 16025 (2003). doi: 10.1021/ja037280d PubMedCrossRefGoogle Scholar
  31. 31.
    M.Y. Guan, J.H. Sun, M. Han, Nanotechnology 18, 415602 (2007). doi: 10.1088/0957-4484/18/41/415602 CrossRefGoogle Scholar
  32. 32.
    Q. Li, V.W.W. Yan, Angew. Chem. Int. Ed. 46, 3486 (2007). doi: 10.1002/anie.200604973 CrossRefGoogle Scholar
  33. 33.
    Y. Xing, M. Li, S.A. Davis, J. Phys. Chem. B 110, 1111 (2006). doi: 10.1021/jp0564896 PubMedCrossRefGoogle Scholar
  34. 34.
    Z. Wang, Z. Quan, J. Lin, J. Fang, J. Nanosci. Nanotechnol. 5, 1532 (2005). doi: 10.1166/jnn.2005.319 PubMedCrossRefGoogle Scholar
  35. 35.
    K. Riwotzki, H. Meyssamy, A. Kornowski, M. Haase, J. Phys. Chem. B 104, 2824 (2000). doi: 10.1021/jp993581r CrossRefGoogle Scholar
  36. 36.
    M. Yu, J. Lin, J. Fu, H.J. Zhang, Y.C. Han, J. Mater. Chem. 13, 1413–1419 (2003). doi: 10.1039/b302600k CrossRefGoogle Scholar
  37. 37.
    M. Bishop, B.J. Berne, J. Chem. Phys. 60, 893 (1974). doi: 10.1063/1.1681165 CrossRefADSGoogle Scholar
  38. 38.
    N. Hashimoto, Y. Takada, K. Sato, S. Ibuki, J. Lumin. 48–49, 893 (1991). doi: 10.1016/0022-2313(91)90265-W CrossRefGoogle Scholar
  39. 39.
    S. Erdei, F.W. Ainger, D. Ravichandran, W.B. White, L.E. Cross, Mater. Lett. 30, 389 (1997). doi: 10.1016/S0167-577X(96)00230-3 CrossRefGoogle Scholar
  40. 40.
    D.K. Williams, B. Bihari, B.M. Tissue, J.M. McHale, J. Phys. Chem. B 102, 916 (1998). doi: 10.1021/jp972996e CrossRefGoogle Scholar
  41. 41.
    R.Y. Wang, J. Lumin. 106, 211 (2004). doi: 10.1016/j.jlumin.2003.10.001 CrossRefGoogle Scholar
  42. 42.
    L.Y. Yu, D.C. Li, M.X. Yue, J. Yao, S.Z. Lu, Chem. Phys. 326, 478 (2006). doi: 10.1016/j.chemphys.2006.03.008 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Songzhu Lin
    • 1
  • Yanlin Yuan
    • 1
  • Haitao Wang
    • 1
  • Ruokun Jia
    • 1
  • Xiaofeng Yang
    • 2
  • Shujun Liu
    • 2
  1. 1.Chemical Engineering InstituteNortheast Dianli UniversityJilinChina
  2. 2.School of Chemistry and Environmental EngineeringChangchun University of Science and TechnologyJilinChina

Personalised recommendations