Advertisement

Adhesion characteristics of Cu/Ni–Cr/polyimide flexible copper clad laminates according to Ni:Cr ratio and Cu electroplating layer thickness

  • Bo-In Noh
  • Jeong-Won Yoon
  • Bo-Young Lee
  • Seung-Boo Jung
Article

Abstract

The adhesion strength of Cu/Ni–Cr/polyimide flexible copper clad laminate (FCCL) was evaluated according to the composition ratio of the Ni–Cr layer and the thickness of the Cu electroplating layer, by using a 90° peel test. The changes in the morphology, chemical bond and adhesion property were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The peel strength of the FCCL increased with increasing Cr content and increasing Cu electroplating layer thickness. This increasing FCCL peel strength was attributed to a lower C–N bond and higher C–O and carbonyl (C=O) bonds in the polyimide surface compared to the FCCL with a lower adhesion strength. The adhesion property of the FCCLs was significantly affected by the Ni:Cr ratio.

Keywords

Polyimide Adhesion Strength Peel Test Polyimide Film Peel Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This work was supported by grant No. RTI04-03-04 from the Regional Technology Innovation Program of the Ministry of Commerce, Industry and Energy (MOCIE).

References

  1. 1.
    S. Kamiya, H. Furuta, M. Omiya, Surf. Coat. Technol. 202, 1084 (2007). doi: 10.1016/j.surfcoat.2007.07.061 CrossRefGoogle Scholar
  2. 2.
    F. Barlow, A. Lostetter, A. Elshabini, Microelectron. Reliab. 42, 1091 (2002). doi: 10.1016/S0026-2714(02)00061-6 CrossRefGoogle Scholar
  3. 3.
    J.Y. Song, J. Yu, Acta Mater. 50, 3985 (2002). doi: 10.1016/S1359-6454(02)00197-0 CrossRefGoogle Scholar
  4. 4.
    S.H. Kim, S.W. Na, N.E. Lee, Y.W. Nam, Y.H. Kim, Surf. Coat. Technol. 200, 2072 (2005). doi: 10.1016/j.surfcoat.2005.05.021 CrossRefGoogle Scholar
  5. 5.
    Y.B. Park, I.S. Park, J. Yu, Mater. Sci. Eng. A 266, 261 (1999). doi: 10.1016/S0921-5093(98)01117-4 CrossRefGoogle Scholar
  6. 6.
    T. Miyamura, J. Koike, Mater. Sci. Eng. A 445–446, 620 (2007). doi: 10.1016/j.msea.2006.09.097 Google Scholar
  7. 7.
    L.P. Buchwalter, K. Holloway, J. Adhes. Sci. Technol. 12, 95 (1998). doi: 10.1163/156856198X00678 CrossRefGoogle Scholar
  8. 8.
    E.C. Ahn, J. Yu, I.S. Park, J. Mater. Sci. 35, 1949 (2000). doi: 10.1023/A:1004770519874 CrossRefGoogle Scholar
  9. 9.
    J.L. Jordan, P.N. Sanda, J.F. Morar, C.A. Kovac, F.J. Himpsel, R.A. Pollak, J. Vac. Sci. Technol. A 4, 1046 (1986). doi: 10.1116/1.573451 CrossRefADSGoogle Scholar
  10. 10.
    J.S. Eom, S.H. Kim, Thin Solid Films 516, 4530 (2008). doi: 10.1016/j.tsf.2008.01.022 CrossRefADSGoogle Scholar
  11. 11.
    R. Haight, R.C. White, B.D. Silverman, P.S. Ho, J. Vac. Sci. Technol. A 6, 2188 (1988). doi: 10.1116/1.575010 CrossRefADSGoogle Scholar
  12. 12.
    N.J. Chou, D.W. Dong, J. Kim, A.C. Liu, J. Electrochem. Soc. 131, 2335 (1984). doi: 10.1149/1.2115252 CrossRefGoogle Scholar
  13. 13.
    I.S. Park, J. Yu, Acta Mater. 46, 2947 (1998). doi: 10.1016/S1359-6454(97)00208-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Bo-In Noh
    • 1
  • Jeong-Won Yoon
    • 1
  • Bo-Young Lee
    • 2
  • Seung-Boo Jung
    • 1
  1. 1.School of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
  2. 2.Department of Aerospace and Mechanical EngineeringKorea Aerospace UniversityKoyangRepublic of Korea

Personalised recommendations