Adhesion characteristics of Cu/Ni–Cr/polyimide flexible copper clad laminates according to Ni:Cr ratio and Cu electroplating layer thickness

  • Bo-In Noh
  • Jeong-Won Yoon
  • Bo-Young Lee
  • Seung-Boo Jung


The adhesion strength of Cu/Ni–Cr/polyimide flexible copper clad laminate (FCCL) was evaluated according to the composition ratio of the Ni–Cr layer and the thickness of the Cu electroplating layer, by using a 90° peel test. The changes in the morphology, chemical bond and adhesion property were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The peel strength of the FCCL increased with increasing Cr content and increasing Cu electroplating layer thickness. This increasing FCCL peel strength was attributed to a lower C–N bond and higher C–O and carbonyl (C=O) bonds in the polyimide surface compared to the FCCL with a lower adhesion strength. The adhesion property of the FCCLs was significantly affected by the Ni:Cr ratio.


Polyimide Adhesion Strength Peel Test Polyimide Film Peel Strength 



This work was supported by grant No. RTI04-03-04 from the Regional Technology Innovation Program of the Ministry of Commerce, Industry and Energy (MOCIE).


  1. 1.
    S. Kamiya, H. Furuta, M. Omiya, Surf. Coat. Technol. 202, 1084 (2007). doi: 10.1016/j.surfcoat.2007.07.061 CrossRefGoogle Scholar
  2. 2.
    F. Barlow, A. Lostetter, A. Elshabini, Microelectron. Reliab. 42, 1091 (2002). doi: 10.1016/S0026-2714(02)00061-6 CrossRefGoogle Scholar
  3. 3.
    J.Y. Song, J. Yu, Acta Mater. 50, 3985 (2002). doi: 10.1016/S1359-6454(02)00197-0 CrossRefGoogle Scholar
  4. 4.
    S.H. Kim, S.W. Na, N.E. Lee, Y.W. Nam, Y.H. Kim, Surf. Coat. Technol. 200, 2072 (2005). doi: 10.1016/j.surfcoat.2005.05.021 CrossRefGoogle Scholar
  5. 5.
    Y.B. Park, I.S. Park, J. Yu, Mater. Sci. Eng. A 266, 261 (1999). doi: 10.1016/S0921-5093(98)01117-4 CrossRefGoogle Scholar
  6. 6.
    T. Miyamura, J. Koike, Mater. Sci. Eng. A 445–446, 620 (2007). doi: 10.1016/j.msea.2006.09.097 Google Scholar
  7. 7.
    L.P. Buchwalter, K. Holloway, J. Adhes. Sci. Technol. 12, 95 (1998). doi: 10.1163/156856198X00678 CrossRefGoogle Scholar
  8. 8.
    E.C. Ahn, J. Yu, I.S. Park, J. Mater. Sci. 35, 1949 (2000). doi: 10.1023/A:1004770519874 CrossRefGoogle Scholar
  9. 9.
    J.L. Jordan, P.N. Sanda, J.F. Morar, C.A. Kovac, F.J. Himpsel, R.A. Pollak, J. Vac. Sci. Technol. A 4, 1046 (1986). doi: 10.1116/1.573451 CrossRefADSGoogle Scholar
  10. 10.
    J.S. Eom, S.H. Kim, Thin Solid Films 516, 4530 (2008). doi: 10.1016/j.tsf.2008.01.022 CrossRefADSGoogle Scholar
  11. 11.
    R. Haight, R.C. White, B.D. Silverman, P.S. Ho, J. Vac. Sci. Technol. A 6, 2188 (1988). doi: 10.1116/1.575010 CrossRefADSGoogle Scholar
  12. 12.
    N.J. Chou, D.W. Dong, J. Kim, A.C. Liu, J. Electrochem. Soc. 131, 2335 (1984). doi: 10.1149/1.2115252 CrossRefGoogle Scholar
  13. 13.
    I.S. Park, J. Yu, Acta Mater. 46, 2947 (1998). doi: 10.1016/S1359-6454(97)00208-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Bo-In Noh
    • 1
  • Jeong-Won Yoon
    • 1
  • Bo-Young Lee
    • 2
  • Seung-Boo Jung
    • 1
  1. 1.School of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
  2. 2.Department of Aerospace and Mechanical EngineeringKorea Aerospace UniversityKoyangRepublic of Korea

Personalised recommendations