Dielectric and impedance properties of Nd3/2Bi3/2Fe5O12 ceramics

  • K. Jawahar
  • Banarji Behera
  • R. N. P. Choudhary


The polycrystalline sample of Nd3/2Bi3/2Fe5O12 was prepared by a high- temperature solid-state reaction technique. Preliminary X-ray structural analysis exhibits the formation of a single-phase tetragonal structure at room temperature. Microstructural analysis by scanning electron microscopy shows that the sintered sample has well defined grains. These grains are distributed uniformly throughout the surface of the sample. Detailed studies of dielectric response at various frequencies and temperatures exhibit a dielectric anomaly at 400 °C. The electrical properties (impedance, modulus and conductivity) of the material were studied using a complex impedance spectroscopy technique. These studies reveal a significant contribution of grain and grain boundary effects in the material. The frequency dependent plots of modulus and the impedance loss show that the conductivity relaxation is of non-Debye type. Studies of electrical conductivity with temperature demonstrate that the compound exhibits Arrhenius-type of electrical conductivity. Study of ac conductivity with frequency suggests that the material obeys Jonscher’s universal power law.


BiFeO3 Negative Temperature Coefficient Tolerance Factor Diffuse Phase Transition Dielectric Anomaly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    D.E. Lacklison, G.B. Scott, J.L. Page. Solid State Commun. 14, 861 (1974). doi: 10.1016/0038-1098(74)90151-3 CrossRefADSGoogle Scholar
  2. 2.
    J.L. Rehspringer, J. Bursik, D. Niznansky, A. Klarikova, J. Magn. Magn. Mater. 211, 291 (2000)CrossRefADSGoogle Scholar
  3. 3.
    A.J. Moulson, J.M. Herbert, Electroceramics (Chapman and Hall, London, 1990), p. 390Google Scholar
  4. 4.
    S. Geller, M.A. Gilleo, J. Phys. Chem. Solids 3, 30 (1957)CrossRefADSGoogle Scholar
  5. 5.
    K. Jawahar, R.N.P. Choudhary, Mater. Lett. 62, 911 (2008)CrossRefGoogle Scholar
  6. 6.
    F. Bartolome, M.D. Kuzmin, J. Bartolome, J. Blasco, J. Garcia, Magn. Magn. Mater. 140–144, 2159 (1995)CrossRefGoogle Scholar
  7. 7.
    H. Pinto, H. Shaked, Solid State Commun. 10, 663 (1972)CrossRefADSGoogle Scholar
  8. 8.
    M. Chmielowski, I. Sosnowska, Solid State Commun. 48, 1007 (1983)CrossRefADSGoogle Scholar
  9. 9.
    I. Sosnowska, E. Steichele, A. Hewat, Physica 136B, 394 (1986)Google Scholar
  10. 10.
    R. Przenioslo, I. Sosnowska, B. Frick, J. Magn. Magn. Mater. 305, 186 (2006)CrossRefADSGoogle Scholar
  11. 11.
    K. Jawahar, R.N.P. Choudhary, Solid. State. Commun. 142, 449 (2007)CrossRefADSGoogle Scholar
  12. 12.
    T. Katsura, T. Sekine, K. Kitayama, T. Sugihara, N. Kimizuka, J. Solid State Chem. 23, 43 (1978)CrossRefADSGoogle Scholar
  13. 13.
    W. Piekarczyk, W. Weppner, A. Rabenau, Mat. Res. Bull. 14, 697 (1979)CrossRefGoogle Scholar
  14. 14.
    S.C. Parida, K.T. Jacob, V. Venugopal, Solid State Sci. 4, 1245 (2002)CrossRefADSGoogle Scholar
  15. 15.
    V.J. Fratello, C.D. Brandle, S.E.G. Slusky, A.J. Valentino, M.P. Norelli, R. Wolfe, J. Cryst. Growth 75, 281 (1986)CrossRefADSGoogle Scholar
  16. 16.
    E. Wu, POWD, An Interactive Powder Diffraction Data Interpretation and Indexing Program, Version 2.1. School of Physical Sciences, Flinders University of South AustraliaGoogle Scholar
  17. 17.
    M.W. Lufaso, P. Woodward: SPuDS, Structure Prediction Diagnostic Software (Ohio State University, Columbus, OH)Google Scholar
  18. 18.
    Y.J. Hsiao, Y.H. Chang, T.H. Fang, Y.S. Chang, Appl. Phys. Lett. 87, 142906 (2005)CrossRefADSGoogle Scholar
  19. 19.
    J.R. MacDonald, Impedance Spectroscopy (Wiley, New York, 1987)Google Scholar
  20. 20.
    J. Plocharski, W. Wieczoreck, Solid State Ionics 28–30, 979 (1988)CrossRefGoogle Scholar
  21. 21.
    F.S. Howell, R.A. Bose, P.B. Macedo, C.T. Moynihan, J. Phys. Chem. 78, 639 (1974)CrossRefGoogle Scholar
  22. 22.
    S.R. Elliot, J. Non-Cryst. Solids 170, 97 (1994)CrossRefADSGoogle Scholar
  23. 23.
    F. Borsa, D.R. Torgeson, S.W. Martin, H.K. Patel, Phy. Rev. B 46, 795 (1992)CrossRefADSGoogle Scholar
  24. 24.
    I.M. Hodge, M.D. Ingram, A.R. West, J. Electroanal. Chem. 74, 125 (1976)CrossRefGoogle Scholar
  25. 25.
    D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850 (1989)CrossRefADSGoogle Scholar
  26. 26.
    R.N.P. Choudhary, Dillip.K. Pradhan, C.M. Tirado, G.E. Bonilla, R.S. Katiyar, Physica Status Solidi (b) 244, 2254 (2007)CrossRefGoogle Scholar
  27. 27.
    K. Funke, Solid State Ionics 94, 27 (1997)CrossRefGoogle Scholar
  28. 28.
    B. Roling, Solid State Ionics 105, 185 (1998)CrossRefGoogle Scholar
  29. 29.
    J.C. Dyre, J. App. Phys. 64, 2456 (1988)CrossRefADSGoogle Scholar
  30. 30.
    A.K. Jonscher, Nature 267, 673 (1977)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • K. Jawahar
    • 1
  • Banarji Behera
    • 2
  • R. N. P. Choudhary
    • 1
  1. 1.Department of Physics and MeteorologyIndian Institute of TechnologyKharagpurIndia
  2. 2.Departamento de Física e QuímicaUniversidade Estadual Paulista (UNESP)Ilha SolteiraBrazil

Personalised recommendations