Skip to main content
Log in

Dielectric and impedance properties of Nd3/2Bi3/2Fe5O12 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The polycrystalline sample of Nd3/2Bi3/2Fe5O12 was prepared by a high- temperature solid-state reaction technique. Preliminary X-ray structural analysis exhibits the formation of a single-phase tetragonal structure at room temperature. Microstructural analysis by scanning electron microscopy shows that the sintered sample has well defined grains. These grains are distributed uniformly throughout the surface of the sample. Detailed studies of dielectric response at various frequencies and temperatures exhibit a dielectric anomaly at 400 °C. The electrical properties (impedance, modulus and conductivity) of the material were studied using a complex impedance spectroscopy technique. These studies reveal a significant contribution of grain and grain boundary effects in the material. The frequency dependent plots of modulus and the impedance loss show that the conductivity relaxation is of non-Debye type. Studies of electrical conductivity with temperature demonstrate that the compound exhibits Arrhenius-type of electrical conductivity. Study of ac conductivity with frequency suggests that the material obeys Jonscher’s universal power law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D.E. Lacklison, G.B. Scott, J.L. Page. Solid State Commun. 14, 861 (1974). doi:10.1016/0038-1098(74)90151-3

    Article  ADS  CAS  Google Scholar 

  2. J.L. Rehspringer, J. Bursik, D. Niznansky, A. Klarikova, J. Magn. Magn. Mater. 211, 291 (2000)

    Article  ADS  CAS  Google Scholar 

  3. A.J. Moulson, J.M. Herbert, Electroceramics (Chapman and Hall, London, 1990), p. 390

  4. S. Geller, M.A. Gilleo, J. Phys. Chem. Solids 3, 30 (1957)

    Article  ADS  CAS  Google Scholar 

  5. K. Jawahar, R.N.P. Choudhary, Mater. Lett. 62, 911 (2008)

    Article  CAS  Google Scholar 

  6. F. Bartolome, M.D. Kuzmin, J. Bartolome, J. Blasco, J. Garcia, Magn. Magn. Mater. 140–144, 2159 (1995)

    Article  Google Scholar 

  7. H. Pinto, H. Shaked, Solid State Commun. 10, 663 (1972)

    Article  ADS  CAS  Google Scholar 

  8. M. Chmielowski, I. Sosnowska, Solid State Commun. 48, 1007 (1983)

    Article  ADS  CAS  Google Scholar 

  9. I. Sosnowska, E. Steichele, A. Hewat, Physica 136B, 394 (1986)

    Google Scholar 

  10. R. Przenioslo, I. Sosnowska, B. Frick, J. Magn. Magn. Mater. 305, 186 (2006)

    Article  ADS  CAS  Google Scholar 

  11. K. Jawahar, R.N.P. Choudhary, Solid. State. Commun. 142, 449 (2007)

    Article  ADS  CAS  Google Scholar 

  12. T. Katsura, T. Sekine, K. Kitayama, T. Sugihara, N. Kimizuka, J. Solid State Chem. 23, 43 (1978)

    Article  ADS  CAS  Google Scholar 

  13. W. Piekarczyk, W. Weppner, A. Rabenau, Mat. Res. Bull. 14, 697 (1979)

    Article  CAS  Google Scholar 

  14. S.C. Parida, K.T. Jacob, V. Venugopal, Solid State Sci. 4, 1245 (2002)

    Article  ADS  CAS  Google Scholar 

  15. V.J. Fratello, C.D. Brandle, S.E.G. Slusky, A.J. Valentino, M.P. Norelli, R. Wolfe, J. Cryst. Growth 75, 281 (1986)

    Article  ADS  CAS  Google Scholar 

  16. E. Wu, POWD, An Interactive Powder Diffraction Data Interpretation and Indexing Program, Version 2.1. School of Physical Sciences, Flinders University of South Australia

  17. M.W. Lufaso, P. Woodward: SPuDS, Structure Prediction Diagnostic Software (Ohio State University, Columbus, OH)

  18. Y.J. Hsiao, Y.H. Chang, T.H. Fang, Y.S. Chang, Appl. Phys. Lett. 87, 142906 (2005)

    Article  ADS  Google Scholar 

  19. J.R. MacDonald, Impedance Spectroscopy (Wiley, New York, 1987)

    Google Scholar 

  20. J. Plocharski, W. Wieczoreck, Solid State Ionics 28–30, 979 (1988)

    Article  Google Scholar 

  21. F.S. Howell, R.A. Bose, P.B. Macedo, C.T. Moynihan, J. Phys. Chem. 78, 639 (1974)

    Article  CAS  Google Scholar 

  22. S.R. Elliot, J. Non-Cryst. Solids 170, 97 (1994)

    Article  ADS  Google Scholar 

  23. F. Borsa, D.R. Torgeson, S.W. Martin, H.K. Patel, Phy. Rev. B 46, 795 (1992)

    Article  ADS  CAS  Google Scholar 

  24. I.M. Hodge, M.D. Ingram, A.R. West, J. Electroanal. Chem. 74, 125 (1976)

    Article  CAS  Google Scholar 

  25. D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850 (1989)

    Article  ADS  CAS  Google Scholar 

  26. R.N.P. Choudhary, Dillip.K. Pradhan, C.M. Tirado, G.E. Bonilla, R.S. Katiyar, Physica Status Solidi (b) 244, 2254 (2007)

    Article  CAS  Google Scholar 

  27. K. Funke, Solid State Ionics 94, 27 (1997)

    Article  CAS  Google Scholar 

  28. B. Roling, Solid State Ionics 105, 185 (1998)

    Article  CAS  Google Scholar 

  29. J.C. Dyre, J. App. Phys. 64, 2456 (1988)

    Article  ADS  Google Scholar 

  30. A.K. Jonscher, Nature 267, 673 (1977)

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. P. Choudhary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jawahar, K., Behera, B. & Choudhary, R.N.P. Dielectric and impedance properties of Nd3/2Bi3/2Fe5O12 ceramics. J Mater Sci: Mater Electron 20, 872–878 (2009). https://doi.org/10.1007/s10854-008-9809-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-008-9809-8

Keywords

Navigation