Advertisement

Effect of air annealing on structural, optical, microscopic, electrical properties of cadmium selenide thin films

  • P. P. Hankare
  • P. A. Chate
  • D. J. Sathe
  • A. A. Patil
Article

Abstract

Cadmium selenide films have been deposited on glass substrate dip method. The resultant films were annealed upto 473 K temperature. The structural properties of cadmium selenide thin films have been investigated by X-ray diffraction techniques. The X-ray diffraction spectra showed that cadmium selenide thin films are polycrystalline. As deposited sample shows cubic phase whereas sample annealed at 473 K shows hexagonal phase. The optical properties showed direct band gap values were found to be in the region of 1.82–1.55 eV. The electrical studies shows conductivity increases with increase in annealing temperature. The optoelectric and structural data are discussed from the point of applications based on achieving high performance devices.

Keywords

Selenium Annealing Temperature Increase Cadmium Selenide Polycrystalline Thin Film Sodium Sulphite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C. Cruz-Vazques, F. Rocha-Alonzo, S.E. Burruel-Ibarra, M. Barboza-Flores, R. Bernal, M. Inoque, Appl. Phys. A 79, 1941 (2004)ADSGoogle Scholar
  2. 2.
    C.D. Lokhande, Mater. Chem. Phys. 27, 1 (1991). doi: 10.1016/0254-0584(91)90158-Q CrossRefGoogle Scholar
  3. 3.
    L. Eckercova, Physics of Thin Films (Plenum Press, New York, 1997)Google Scholar
  4. 4.
    I.K. Zawawi, J. Mater. Sci. Mater. Electron. 14, 13 (2003). doi: 10.1023/A:1021519413844 CrossRefGoogle Scholar
  5. 5.
    S.M. Pawar, A.V. Moholkar, K.Y. Rajpure, C.H. Bhosale, J. Phys. Chem. Solids 67, 2386 (2006)CrossRefADSGoogle Scholar
  6. 6.
    P.P. Hankare, S.D. Delekar, M.R. Asabe, P.A. Chate, V.M. Bhuse, A.S. Khomane, K.M. Garadkar, B.D. Sarwade, J. Phys. Chem. Solids 67, 2506 (2006)CrossRefADSGoogle Scholar
  7. 7.
    S. Licht, D. Peramunage, Nature 345, 330 (1990). doi: 10.1038/345330a0 CrossRefADSGoogle Scholar
  8. 8.
    R.L. Byer, Photonics Spectra 25, 103 (1995)Google Scholar
  9. 9.
    V.A. Smyntyna, V. Gersutenko, S. Sashulis, G. Mattogno, S. Reghini, Sens. Actuators B 19, 464 (1994)CrossRefGoogle Scholar
  10. 10.
    V.M. Garcia, M.T.S. Nair, P.K. Nair, R.A. Zingaro, Semicond. Sci. Technol. 5, 427 (1996)CrossRefADSGoogle Scholar
  11. 11.
    F.Y. Gan, I. Shih, IEEE Trans. Electron Devices 49, 15 (2002)CrossRefADSGoogle Scholar
  12. 12.
    M. Roth, Nucl. Instrum. Methods Phys. Res. A 283, 291 (1989)CrossRefADSGoogle Scholar
  13. 13.
    P.A. Krishna Murthy, P.A. Shivkumar, Thin Solid Films 121, 151 (1984)CrossRefADSGoogle Scholar
  14. 14.
    M. Bouroushian, J.C. Got, Z. Loizos, N. Spyrellis, G. Maurin, Thin Solid Films 387, 39 (2001)CrossRefGoogle Scholar
  15. 15.
    R.B. Kale, C.D. Lokhande, Semicond. Sci. Technol. 20, 1 (2005)CrossRefADSGoogle Scholar
  16. 16.
    A. Ndiaye, I. Youm, Eur. Phys. J. 23, 75 (2003)Google Scholar
  17. 17.
    H.M. Pathan, B.R. Sankpal, J.D. Desai, C.D. Lokhande, Mater. Chem. Phys. 78, 11 (2002)CrossRefGoogle Scholar
  18. 18.
    O. Yamamoto, T. Sasamoto, M. Inagaki, J. Mater. Res. 13, 3394 (1998)CrossRefADSGoogle Scholar
  19. 19.
    M. Bouroushian, Z. Loizos, N. Spyrellis, G. Maurin, Thin Solid Films 229, 101 (1993)CrossRefADSGoogle Scholar
  20. 20.
    M. Bouroushian, Z. Loizos, N. Spyrellis, G. Maurin, Appl. Surf. Sci. 115, 103 (1997)CrossRefADSGoogle Scholar
  21. 21.
    C.M.T. Gutierrez, J. Ortega, J. Electrochem. Soc. 136, 2316 (1989)CrossRefGoogle Scholar
  22. 22.
    T.K. Gupta, J. Doh, J. Mater. Res. 7, 1243 (1992)CrossRefADSGoogle Scholar
  23. 23.
    P.K. Kalita, B.K. Sarma, H.L. Das, Bull. Mater. Sci. 23, 313 (2000)CrossRefGoogle Scholar
  24. 24.
    Y. Yan, M.M. Al-Jassim, Prog. Photovolt. 10, 309 (2002)CrossRefGoogle Scholar
  25. 25.
    M.J. Kim, H.S. Lee, J.Y. Lee, T.W. Kim, K.H. Yoo, M.D. Kim, J. Mater. Sci. 39, 323 (2004)CrossRefADSGoogle Scholar
  26. 26.
    S.M. Sze, VLSI Technology (McGraw-Hill, New York, 1988)Google Scholar
  27. 27.
    M.J. Kim, H.S. Lee, J.Y. Lee, T.W. Kim, K.H. Yoo, M.D. Kim, J. Mater. Sci. 39, 323 (2004)CrossRefADSGoogle Scholar
  28. 28.
    P.P. Hankare, P.A. Chate, M.R. Asabe, S.D. Delekar, I.S. Mulla, K.M. Garadkar, J. Mater. Sci. Mater. Electron. 17, 1055 (2006)CrossRefGoogle Scholar
  29. 29.
    F.A. Kroger, The Chemistry of Imperfect Crystals (North Holland, Amsterdam, 1964)Google Scholar
  30. 30.
    C.F. Rong, G.D. Watkins, Phys. Rev. Lett. 58, 1486 (1989)CrossRefADSGoogle Scholar
  31. 31.
    P.P. Hankare, S.D. Delekar, P.A. Chate, S.D. Sabane, K.M. Garadkar, V.M. Bhuse, Semicond. Sci. Technol. 20, 257 (2005)CrossRefADSGoogle Scholar
  32. 32.
    P.P. Hankare, P.A. Chate, S.D. Delekar, M.R. Asabe, I.S. Mulla, J. Phys. Chem. Solids 67, 2310 (2006)CrossRefADSGoogle Scholar
  33. 33.
    K.L. Chopra, Thin Film Phenomenon (McGraw- Hill, New York, 1969)Google Scholar
  34. 34.
    G.I. Rusu, M.E. Popa, G.S. Rusu, I. Salaoru, Appl. Surf. Sci. 218, 222 (2003)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • P. P. Hankare
    • 1
  • P. A. Chate
    • 2
  • D. J. Sathe
    • 1
  • A. A. Patil
    • 1
  1. 1.Solid State Research Laboratory, Department of ChemistryShivaji UniversityKolhapurIndia
  2. 2.Department of ChemistryJ.S.M. CollegeAlibagIndia

Personalised recommendations