Advertisement

Structure and microwave dielectric properties of Ba3Ti4−x (Fe1/2Nb1/2) x Nb4O21 solid solutions

  • Dong Zou
  • Qi-Long Zhang
  • Hui Yang
Article

Abstract

Ba3Ti4−x (Fe1/2Nb1/2) x Nb4O21 (0 ≤ x ≤ 4) ceramics with the substitution of (Fe1/2Nb1/2) for Ti were investigated. The modified Ba3Ti4Nb4O21 dielectric ceramics prepared via the solid state reaction route exhibited single hexagonal structure. The dielectric constant and the quality factor of Ba3Ti4−x (Fe1/2Nb1/2) x Nb4O21 (0 ≤ x ≤ 4) ceramics decreased with an increase of x. Improved temperature coefficient of the resonant frequency of samples was obtained by the substitution of (Fe1/2Nb1/2) for Ti. Optimal microwave dielectric properties of ε = 50, Q × f = 5200 GHz, and τ f = 10 ppm/°C in Ba3Ti2(Fe1/2Nb1/2)2Nb4O21 were obtained, which indicated its potential for microwave application.

Keywords

Dielectric Constant Resonant Frequency Sinter Temperature Temperature Coefficient Microwave Dielectric Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    K. Wakino, K. Minai, H. Tamura, J. Am. Ceram. Soc. 67, 278 (1984)Google Scholar
  2. 2.
    H. Tamura, J. Eur. Ceram. Soc. 26, 1775 (2006). doi: 10.1016/j.jeurceramsoc.2005.09.080 CrossRefGoogle Scholar
  3. 3.
    Y.C. Lee, W.H. Leeb, F.S. Shieuc, J. Eur. Ceram. Soc. 25, 3459 (2005). doi: 10.1016/j.jeurceramsoc.2004.09.007 CrossRefGoogle Scholar
  4. 4.
    H. Matsumoto, H. Tamura, K. Wakino, Jpn. J. Appl. Phys. 30, 2347 (1991). doi: 10.1143/JJAP.30.2347 CrossRefADSGoogle Scholar
  5. 5.
    H. Ohsato, T. Ohhashi, S. Nishigaki, T. Okuda, K. Sumiya, S. Suzuki, Jpn. J. Appl. Phys. 32, 4323 (1993). doi: 10.1143/JJAP.32.4323 CrossRefADSGoogle Scholar
  6. 6.
    G.L. Roberts, R.J. Cava, W.F. Peck Jr., J.J. Karjewski, J. Mater. Res. 12, 526 (1997). doi: 10.1557/JMR.1997.0075 CrossRefADSGoogle Scholar
  7. 7.
    R. Ratheesh, H. Sreemoolanadhan, S. Suma, M.T. Sebastian, J. Mater. Sci. Mater. Electron. 9, 291 (1998). doi: 10.1023/A:1008828807015 CrossRefGoogle Scholar
  8. 8.
    M.T. Sebastian, J. Mater. Sci. Mater. Electron. 10, 475 (1999). doi: 10.1023/A:1008915715602 CrossRefGoogle Scholar
  9. 9.
    S. Rajesh, S. Nivasbadu, S.N. Potty, R. Ratheesh, Mater. Lett. 60, 2179 (2006). doi: 10.1016/j.matlet.2005.12.094 CrossRefGoogle Scholar
  10. 10.
    W.J. Ko, Y.J. Choi, J.H. Park, J.H. Park, J.G. Park, J. Korean Phys. Soc. 49, 1234 (2006)Google Scholar
  11. 11.
    S. Saha, T.P. Sinha, Phys. Rev. B 65, 134103 (2002). doi: 10.1103/PhysRevB.65.134103 CrossRefADSGoogle Scholar
  12. 12.
    I.P. Raevski, S.A. Prosandeev, A.S. Bogatin, M.A. Malitskaya, L. Jastrabik, J. Appl. Phys. 93, 4130 (2003). doi: 10.1063/1.1558205 CrossRefADSGoogle Scholar
  13. 13.
    Y.Y. Liu, X.M. Chen, X.Q. Liu, L. Li, Appl. Phys. Lett. 90, 262904 (2007). doi: 10.1063/1.2752729 CrossRefADSGoogle Scholar
  14. 14.
    B.W. Hakki, P.D. Coleman, IEEE Trans. Microwave Theory Tech. 8, 402 (1960). doi: 10.1109/TMTT.1960.1124749 CrossRefGoogle Scholar
  15. 15.
    R.D. Shannon, C.T. Prewitt, Acta Crystallogr. B 25, 925 (1969). doi: 10.1107/S0567740869003220 CrossRefGoogle Scholar
  16. 16.
    K.W. Kang, H.T. Kim, M. Lanagan, T. Shrout, Mater. Res. Bull. 41, 1385 (2006). doi: 10.1016/j.materresbull.2005.12.008 CrossRefGoogle Scholar
  17. 17.
    A.J. Bosman, E.E. Havinga, Phys. Rev. 129, 1593 (1963). doi: 10.1103/PhysRev.129.1593 CrossRefADSGoogle Scholar
  18. 18.
    R.D. Shannon, J. Appl. Phys. 73, 348 (1993). doi: 10.1063/1.353856 CrossRefADSGoogle Scholar
  19. 19.
    B.D. Silverman, Phys. Rev. 125, 1921 (1962). doi: 10.1103/PhysRev.125.1921 CrossRefADSGoogle Scholar
  20. 20.
    C.L. Huang, M.H. Weng, Mater. Res. Bull. 36, 683 (2001). doi: 10.1016/S0025-5408(01)00531-1 CrossRefGoogle Scholar
  21. 21.
    Y. Zhi, A. Chen, P.M. Vilarinho, P.Q. Mantas, J.L. Baptista, J. Eur. Ceram. Soc. 18, 1613 (1998). doi: 10.1016/S0955-2219(98)00027-2 CrossRefGoogle Scholar
  22. 22.
    H. Ohsato, J. Eur. Ceram. Soc. 21, 2703 (2001). doi: 10.1016/S0955-2219(01)00349-1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.College of Materials Science and Chemical EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations