Skip to main content
Log in

Structure and microwave dielectric properties of Ba3Ti4−x (Fe1/2Nb1/2) x Nb4O21 solid solutions

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ba3Ti4−x (Fe1/2Nb1/2) x Nb4O21 (0 ≤ x ≤ 4) ceramics with the substitution of (Fe1/2Nb1/2) for Ti were investigated. The modified Ba3Ti4Nb4O21 dielectric ceramics prepared via the solid state reaction route exhibited single hexagonal structure. The dielectric constant and the quality factor of Ba3Ti4−x (Fe1/2Nb1/2) x Nb4O21 (0 ≤ x ≤ 4) ceramics decreased with an increase of x. Improved temperature coefficient of the resonant frequency of samples was obtained by the substitution of (Fe1/2Nb1/2) for Ti. Optimal microwave dielectric properties of ε = 50, Q × f = 5200 GHz, and τ f = 10 ppm/°C in Ba3Ti2(Fe1/2Nb1/2)2Nb4O21 were obtained, which indicated its potential for microwave application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Wakino, K. Minai, H. Tamura, J. Am. Ceram. Soc. 67, 278 (1984)

    CAS  Google Scholar 

  2. H. Tamura, J. Eur. Ceram. Soc. 26, 1775 (2006). doi:10.1016/j.jeurceramsoc.2005.09.080

    Article  CAS  Google Scholar 

  3. Y.C. Lee, W.H. Leeb, F.S. Shieuc, J. Eur. Ceram. Soc. 25, 3459 (2005). doi:10.1016/j.jeurceramsoc.2004.09.007

    Article  CAS  Google Scholar 

  4. H. Matsumoto, H. Tamura, K. Wakino, Jpn. J. Appl. Phys. 30, 2347 (1991). doi:10.1143/JJAP.30.2347

    Article  ADS  CAS  Google Scholar 

  5. H. Ohsato, T. Ohhashi, S. Nishigaki, T. Okuda, K. Sumiya, S. Suzuki, Jpn. J. Appl. Phys. 32, 4323 (1993). doi:10.1143/JJAP.32.4323

    Article  ADS  CAS  Google Scholar 

  6. G.L. Roberts, R.J. Cava, W.F. Peck Jr., J.J. Karjewski, J. Mater. Res. 12, 526 (1997). doi:10.1557/JMR.1997.0075

    Article  ADS  CAS  Google Scholar 

  7. R. Ratheesh, H. Sreemoolanadhan, S. Suma, M.T. Sebastian, J. Mater. Sci. Mater. Electron. 9, 291 (1998). doi:10.1023/A:1008828807015

    Article  CAS  Google Scholar 

  8. M.T. Sebastian, J. Mater. Sci. Mater. Electron. 10, 475 (1999). doi:10.1023/A:1008915715602

    Article  CAS  Google Scholar 

  9. S. Rajesh, S. Nivasbadu, S.N. Potty, R. Ratheesh, Mater. Lett. 60, 2179 (2006). doi:10.1016/j.matlet.2005.12.094

    Article  CAS  Google Scholar 

  10. W.J. Ko, Y.J. Choi, J.H. Park, J.H. Park, J.G. Park, J. Korean Phys. Soc. 49, 1234 (2006)

    CAS  Google Scholar 

  11. S. Saha, T.P. Sinha, Phys. Rev. B 65, 134103 (2002). doi:10.1103/PhysRevB.65.134103

    Article  ADS  Google Scholar 

  12. I.P. Raevski, S.A. Prosandeev, A.S. Bogatin, M.A. Malitskaya, L. Jastrabik, J. Appl. Phys. 93, 4130 (2003). doi:10.1063/1.1558205

    Article  ADS  CAS  Google Scholar 

  13. Y.Y. Liu, X.M. Chen, X.Q. Liu, L. Li, Appl. Phys. Lett. 90, 262904 (2007). doi:10.1063/1.2752729

    Article  ADS  Google Scholar 

  14. B.W. Hakki, P.D. Coleman, IEEE Trans. Microwave Theory Tech. 8, 402 (1960). doi:10.1109/TMTT.1960.1124749

    Article  Google Scholar 

  15. R.D. Shannon, C.T. Prewitt, Acta Crystallogr. B 25, 925 (1969). doi:10.1107/S0567740869003220

    Article  CAS  Google Scholar 

  16. K.W. Kang, H.T. Kim, M. Lanagan, T. Shrout, Mater. Res. Bull. 41, 1385 (2006). doi:10.1016/j.materresbull.2005.12.008

    Article  CAS  Google Scholar 

  17. A.J. Bosman, E.E. Havinga, Phys. Rev. 129, 1593 (1963). doi:10.1103/PhysRev.129.1593

    Article  ADS  CAS  Google Scholar 

  18. R.D. Shannon, J. Appl. Phys. 73, 348 (1993). doi:10.1063/1.353856

    Article  ADS  CAS  Google Scholar 

  19. B.D. Silverman, Phys. Rev. 125, 1921 (1962). doi:10.1103/PhysRev.125.1921

    Article  ADS  CAS  Google Scholar 

  20. C.L. Huang, M.H. Weng, Mater. Res. Bull. 36, 683 (2001). doi:10.1016/S0025-5408(01)00531-1

    Article  CAS  Google Scholar 

  21. Y. Zhi, A. Chen, P.M. Vilarinho, P.Q. Mantas, J.L. Baptista, J. Eur. Ceram. Soc. 18, 1613 (1998). doi:10.1016/S0955-2219(98)00027-2

    Article  CAS  Google Scholar 

  22. H. Ohsato, J. Eur. Ceram. Soc. 21, 2703 (2001). doi:10.1016/S0955-2219(01)00349-1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, D., Zhang, QL. & Yang, H. Structure and microwave dielectric properties of Ba3Ti4−x (Fe1/2Nb1/2) x Nb4O21 solid solutions. J Mater Sci: Mater Electron 20, 756–760 (2009). https://doi.org/10.1007/s10854-008-9798-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-008-9798-7

Keywords

Navigation