Corrosion of electrodeposited copper by exposure to volatile organic compounds



In this paper we investigate the corrosive behaviour of various volatile organic compounds (VOCs) on electroplated copper. The VOCs we considered were of the following types: (i) aromatic and substituted-aromatic compounds (benzene, toluene and ethyl benzene); (ii) a chlorine-substituted hydrocarbon (dichloromethane) and (iii) an aliphatic alcohol (isopropyl alcohol). Contamination by VOCs is typical of ULSI (Ultra Large Scale Integration) manufacturing environments, and exposure of Cu to VOC-contaminated clean room air has been pinpointed as a serious cause of interconnects failure. SEM observation highlighted corrosion signature that are typical of the different classes of molecules. In particular, the corrosion of copper is almost absent following exposure to isopropyl alcohol, very slow in the case of aromatic molecules and severe in the case of dichloromethane. The obtained results can be interpreted in terms of a crevice corrosion mechanism under droplets, enhanced by pitting in the presence of chlorinated solvents.


Volatile Organic Compound Ethyl Benzene Chemical Mechanical Polishing Crevice Corrosion Corrosive Attack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Highly qualified and continuous technical assistance with SEM are kindly acknowledged to Donato Cannoletta, (Dipartimento di Ingegneria dell’Innovazione, Università del Zalento, Lecce, Italy).


  1. 1.
    SEMI Standard F21–F95, Classification of Airborne Molecular Contaminant Levels in Clean Environment (Semiconductor Equipment and Material International, Mountain View, CA, 1995–1996)Google Scholar
  2. 2.
    K. Kummerle, Advances in Airborne Molecular Contamination in 300 nm Process Technology, 4th edn (Semiconductor FabTech, London, 2002)Google Scholar
  3. 3.
    W. Den, H. Bai, Y. Kang, J. Electrochem. Soc. 153(2), G149–G159 (2006). doi: 10.1149/1.2147286 CrossRefGoogle Scholar
  4. 4.
    C. Muller, J. IEST 45(SPEC), 65–79 (2002)Google Scholar
  5. 5.
    C.F. Yeh, C.W. Hsiao, S.J. Lin, C.M. Hsieh, T. Kusumi, H. Aomi, H. Kaneko, B.T. Dai, M.-S. Tsai, IEEE Trans. Semicond. Manuf. 17(2), 45 (2004)CrossRefGoogle Scholar
  6. 6.
    S.B. Zhu, IEEE/SEMI Advanced Semiconductor Manufacturing Conference, 2002Google Scholar
  7. 7.
    J. Frickinger, J. Bugler, G. Zielonka, L. Pfitzner, H. Ryssel, S. Hollemann et al., IEEE Trans. Semicond. Manuf. 13(4), 427 (2007). doi: 10.1109/66.892628 CrossRefGoogle Scholar
  8. 8.
    N. Mǘnter, B.O. Kolbesen, W. Storm, T. Mǘller, Diffus. Defect Data B Solid State Phenom. 9, 109–112 (2003)CrossRefGoogle Scholar
  9. 9.
    L.K. Mei, C. Muller, S.B. Tan, R. Thomas, Semi-Quantitative Analysis Techniques for AMC Monitoring. ASMC (Advanced Semiconductor Manufacturing Conference) Proceedings, Volume 2006, pp. 383–390Google Scholar
  10. 10.
    B.H.J. Tseng, M.D. You, S.C. Hsin, IEEE Trans. Device Mater. Reliab. 5(4), 623–630 (2005)CrossRefGoogle Scholar
  11. 11.
    K. Saga, T. Hattori, J. Electrochem. Soc. 143(10), 3279 (1996). doi: 10.1149/1.1837198 CrossRefGoogle Scholar
  12. 12.
    H. Habuka, S. Ishiwari, H. Kato, M. Shimada, K. Okuyama, J. Electrochem. Soc. 150(2), G148–G154 (2003). doi: 10.1149/1.1536181 CrossRefGoogle Scholar
  13. 13.
    J.S. Jeon, C. Wong, S. Ohsiek, H.S. Kim, B. Ogle, Diffus. Defect Data B Solid State Phenom. 92, 125–128 (2003)CrossRefGoogle Scholar
  14. 14.
    N.B. Rana, F. Shadman, IEEE Trans. Semicond. Manuf. 16(1), 76–81 (2003)CrossRefGoogle Scholar
  15. 15.
    R.G. Kelly, in Encyclopaedia of Electrochemistry, ed. by A.J. Bard, M. Stratmann, G.S. Frankel (Wiley-VCH, Winheim, 2003), pp. 275–307Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria dell’InnovazioneUniversità del SalentoLecceItaly

Personalised recommendations