Densification, phase composition, and properties of borosilicate glass composites containing nano-alumina and titania

  • A. A. El-Kheshen
  • M. F. Zawrah
  • M. Awaad


Five samples of glass/ceramic composites were prepared from borosilicate glasses and both nano-aluminum oxide and nano-titanium oxide. The glass composite samples contain 10, 20, 30, 40, 50 wt.% of alumina and titania mixture. The ratio of Al2O3:TiO2 in the mixture was 1:1. The formation of cristobalite in the glass matrix of low firing glass/ceramic composite substrates limits the efficiency of the ceramic substrate when it is used in circuit boards. In the present study, addition of both alumina and titania to a borosilicate glass as a ceramic filler caused the diffusion of alumina and titania phases (anatase and rutile) constituents into the glass matrix and prevented the formation of a cristobalite. Addition of both the ceramics suppresses cristobalite formation more effectively than one of them used alone and results in lower dielectric constant and thermal expansion coefficients.


Rutile Borosilicate Glass Anatase Phase Cristobalite Apparent Porosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    H.C. Cao, M.D. Thouless, Tensile tests of ceramic-matrix composites: Theory and experiment. J. Am. Ceram. Soc. 73, 2091–2094 (1990). doi: 10.1111/j.1151-2916.1990.tb05273.x CrossRefGoogle Scholar
  2. 2.
    A.A. El-Kheshen, M.F. Zawrah, Sinterability, microstructure and properties of glass/ceramic composites. Ceram. Int. 29, 251–257 (2003). doi: 10.1016/S0272-8842(02)00112–8 CrossRefGoogle Scholar
  3. 3.
    R.C. Monterio, M.M. Lima, Effect of compaction on the sintering of borosilicate glass/alumina composites. J. Eur. Ceram. Soc. 23, 1813–1818 (2003). doi: 10.1016/S0955-2219(02)00422-3 CrossRefGoogle Scholar
  4. 4.
    H. Jantunen, S. Leppävuori, A. Turunen, A. Uusimäki, Multilayer resonators and a band pass filter fabricated from a novel low-temperature co-fired ceramic. J. Electron. Mater. 31, 191–195 (2002). doi: 10.1007/s11664-002-0205-5 CrossRefADSGoogle Scholar
  5. 5.
    G.H. Chen, L. Xin-Yu, Low-temperature-sintering and characterization of glass-ceramic composites. J. Mater. Sci. Mater. Electron. 17, 877–882 (2006). doi: 10.1007/s10854-006-0039-7 CrossRefGoogle Scholar
  6. 6.
    J.H. Jean, S.C. Lin, Effects of borosilicate glass on densification and properties of borosilicate glass + TiO2 ceramics. J. Mater. Res. 14, 4 (1999)Google Scholar
  7. 7.
    S.-H. Yoon, D.-W. Kim, S.-Y. Cho, K.S. Hong, Phase analysis and microwave dielectric properties of LTCC TiO2 with glass system. J. Eur. Ceram. Soc. 23, 2549–2552 (2003). doi: 10.1016/S0955-2219(03)00144-4 CrossRefGoogle Scholar
  8. 8.
    M.F. Zawrah, E.M. Hamzawy, Effect of cristobalite formation on sinterability, microstructure and properties of glass/ceramic composites. Ceram. Int. 28, 123–130 (2002). doi: 10.1016/S0272-8842(01)00067-0 CrossRefGoogle Scholar
  9. 9.
    E.M. Hamzawy, A.A. El-Kheshen, M.F. Zawrah, Densification and properties of glass/cordierite composites. Ceram. Int. 31, 383–389 (2005). doi: 10.1016/j.ceramint.2004.06.003 CrossRefGoogle Scholar
  10. 10.
    M.M. Lima, R.C.C. Monterio, Characterization and thermal behavior of a borosilicate glass. Thermochim. Acta 373, 69–74 (2001). doi: 10.1016/S0040-6031(01)00456-7 CrossRefGoogle Scholar
  11. 11.
    A.R. Boccaccini, Special review, launching into the great new millennium, glass and glass-ceramic matrix composites materials. J. Ceram. Soc. Jpn. 109(7), S99–S109 (2001)Google Scholar
  12. 12.
    M. Awad, H. Mörtel, S.M. Naga, Densification mechanical and microstructure properties of β-spodumene-alumina composites. J. Mater. Sci. Mater. Electron. 16, 337 (2005)Google Scholar
  13. 13.
    El-Kheshen, Effect of alumina addition on properties of glass/ceramic composites. Br. Ceram. Trans. 102, 5 (2003)CrossRefGoogle Scholar
  14. 14.
    J.H. Jean, T.K. Gupta, J. Mater. Res. 9, 486 (1994). doi: 10.1557/JMR.1994.0486 CrossRefADSGoogle Scholar
  15. 15.
    J.H. Jean, T.K. Gupta, Densification kinetics and modeling of glass-filled alumina composite. J. Mater. Res. 9, 3 (1994)Google Scholar
  16. 16.
    R. Debnath, J. Chaudhuri, Inhibiting effect of AlPO4 and SiO2 on the anatase–rutile transformation reaction: An X-ray and laser Raman study. J. Mater. Res. 7, 12 (1992). doi: 10.1557/JMR.1992.3348 CrossRefGoogle Scholar
  17. 17.
    P. Cheng, M. Zheng, Y. Jin, Preparation and characterization of silica-doped titania photocatalyst through sol–gel method. Mater. Lett. 57, 2989–2994 (2003). doi: 10.1016/S0167-577X(02)01409-X CrossRefGoogle Scholar
  18. 18.
    B. Schwartz, J. Phys. Chem. Solids 45, 1051 (1984). doi: 10.1016/0022-3697(84)90048-9 CrossRefADSGoogle Scholar
  19. 19.
    A.J. Bodgett, in Proceedings of the 30th Electronic components conference, IEEE, New York, 1980Google Scholar
  20. 20.
    V.A. Greenhut, in Engineered materials handbook: Adhesives and sealants, vol 4, ed. by H.F. Brinson (ASM International, Materials Park, OH, 1991), pp. 298–311Google Scholar
  21. 21.
    D.R. Hummer, P.J. Heaney, J.E. Post, Thermal expansion of anatase and rutile between 300 and 575 K using synchrotron powder X-ray diffraction. Powder Diffr. 22(4), 352–357 (2007). doi: 10.1154/1.2790965 CrossRefADSGoogle Scholar
  22. 22.
    A.C. Withers, J.E. Eric, Z. Youxue, Rutile/TiO2 II phase equilibria. Contrib. Mineral. Petrol. 204, 145–199 (2003)Google Scholar
  23. 23.
    T. Sekiya, Y. Takatoshi, K. Nozomi, Mulmi Deependra Das, K. Susumu, M. Yutaka, K. Tetsuya, Defects in anatase TiO2 single crystal controlled by heat treatments. J. Phys. Soc. Jpn. 73(3), 703–710 (2004). doi: 10.1143/JPSJ.73.703 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Glass ResearchNational Research CenterCairoEgypt
  2. 2.Department of Refractory and CeramicsNational Research CenterCairoEgypt

Personalised recommendations