Spin coating of transparent zinc oxide films using novel precursor

  • Ahalapitiya H. Jayatissa
  • Kun Guo
  • Tarun Gupta
  • Ambalangodage C. Jayasuriya


The coating of transparent ZnO films using zinc 2-ethylhexanoate [Zn(OOCH(C2H5)C4H9)2] as a novel metal organic monomer is reported. Zinc 2-ethylhexanoate is liquid at room temperature and can be spin-coated on a flat substrate without precipitation of ZnO under ambient condition. The spin-coated films were heated at different temperatures to remove unwanted organic materials from the surface. It was found that transparent ZnO films could be produced on glass substrates at low heating temperature (~400 °C). The ZnO films produced using the new monomer were free of cracks and defects. Also the ZnO films produced using the new monomer have excellent optical transmittance, mechanical properties and small surface roughness. The surface morphology and degree of crystallinity of the films coated by the new monomer were compared with these properties of ZnO films produced using zinc acetate-based sol–gels. The results clearly indicate that the novel monomer is a potential precursor for coating transparent ZnO films at low temperatures.


Atomic Force Microscopy Glass Substrate Zinc Acetate Metal Alkoxide Zinc Oxide Film 



This research was partially supported by grants from the National Science Foundation (ECS-0401690) and DARPA (HR0011-07-1-0003).


  1. 1.
    D.G. Baik, S.M. Cho, Thin Solid Films 354, 227 (1999). doi: 10.1016/S0040-6090(99)00559-3 CrossRefADSGoogle Scholar
  2. 2.
    A.H. Jayatissa, Semicond. Sci. Technol. 18, L27 (2003). doi: 10.1088/0268-1242/18/6/101 CrossRefADSGoogle Scholar
  3. 3.
    M. Suchea, S. Christoulakis, M. Katharakis, N. Katsarakis, G. Kiriakidis, J. Phys Conf. Ser. 10, 147 (2005). doi: 10.1088/1742-6596/10/1/036 CrossRefADSGoogle Scholar
  4. 4.
    T.K. Subramanyam, N.B. Srinivasulu, S. Uthanna, Cryst. Res. Technol. 35, 1193 (2000). doi:10.1002/1521-4079(200010)35:10<1193::AID-CRAT1193>3.0.CO;2-6CrossRefGoogle Scholar
  5. 5.
    H.Y. Bae, G.M. Choi, Sens. Actuators B 55, 47 (1999)CrossRefGoogle Scholar
  6. 6.
    M. Miyazaki, M. Sato, K. Mitsui, H. Nishimura, J. Non-Cryst. Solids 218, 323 (1997). doi: 10.1016/S0022-3093(97)00241-X CrossRefADSGoogle Scholar
  7. 7.
    M. Purica, E. Budianu, E. Rusu, M. Danila, R. Gavrila, Thin Solid Films 403, 404 (2002). doi: 10.1016/S0040-6090(01)01544-9 CrossRefGoogle Scholar
  8. 8.
    Y. Chen, D.M. Bagnall, Z. Zhu, T. Sekiuchi, K. Park, K. Hiraga et al., J. Cryst. Growth 181, 165 (1997). doi: 10.1016/S0022-0248(97)00286-8 CrossRefADSGoogle Scholar
  9. 9.
    D. Bao, H. Gu, A. Kuang, Thin Solid Films 312, 37 (1998). doi: 10.1016/S0040-6090(97)00302-7 CrossRefGoogle Scholar
  10. 10.
    X.T. Zhang, Y.C. Liu, Z.Z. Zhi, J.Y. Zhang, Y.M. Lu, W. Xu et al., J. Cryst. Growth 240, 463 (2002). doi: 10.1016/S0022-0248(02)00924-7 CrossRefADSGoogle Scholar
  11. 11.
    T. Tsuchiya, J. Non-Cryst. Solids 178, 327 (1994). doi: 10.1016/0022-3093(94)90302-6 CrossRefGoogle Scholar
  12. 12.
    J.Q. Xu, Q.Y. Pan, Y.A. Shun, Z.Z. Tian, Sens. Actuators B 66, 277 (2000)CrossRefGoogle Scholar
  13. 13.
    X.L. Cheng, H. Zhao, L.H. Huo, S. Gao, J.G. Zhao, Sens. Actuators B 102, 248 (2004)CrossRefGoogle Scholar
  14. 14.
    Z.B. Fanga, Z.J. Yana, Y.S. Tana, X.Q. Liua, Y.Y. Wang, Appl. Surf. Sci. 241, 303 (2005). doi: 10.1016/j.apsusc.2004.07.056 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ahalapitiya H. Jayatissa
    • 1
  • Kun Guo
    • 1
  • Tarun Gupta
    • 1
    • 2
  • Ambalangodage C. Jayasuriya
    • 1
    • 3
  1. 1.Department of Mechanical, Industrial and Manufacturing Engineering (MIME)The University of ToledoToledoUSA
  2. 2.Department of Industrial and Manufacturing Engineering (IME)Western Michigan UniversityKalamazooUSA
  3. 3.Department of OrthopaedicThe University of ToledoToledoUSA

Personalised recommendations