Advertisement

Effect of seed layer on the ferroelectric properties and leakage current characteristics of sol–gel derived vanadium doped PbZr0.53Ti0.47O3 films

  • S. E. Valavan
Article

Abstract

In this paper, we report the ferroelectric properties and leakage current characteristics of vanadium-doped PbZr0.53Ti0.47O3 (PZTV) films grown on various seed layers prepared by a sol–gel process. The PZTV multilayered film of ~250-nm-thick showed excellent ferroelectric properties, with a large remnant polarization (P r) of ~30 μC/cm2 (E c ~ 90 kV/cm), a high saturation polarization (P s) of ~85 μC/cm2 for an applied field of 1,000 kV/cm, fatigue-free characteristics of up to ≥ 1010 switching cycles, and a low leakage current density of 7 × 10−8 A/cm2 at 100 kV/cm. X-ray diffraction (XRD), atomic force microscopy (AFM), and scanning electron microscopy (SEM) investigations indicated that PZTV films grown on PbZr0.53Ti0.47O3/PbLa0.05TiO3 (PZT/PLT) seed layers exhibited a dense, well-crystallized microstructure with random orientations and a rather smooth surface morphology.

Keywords

Seed Layer Ferroelectric Property Leakage Current Density Morphotropic Phase Boundary Remnant Polarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.F. Scott, C.A. Paz de Arajuo, Science 246, 1400 (1989). doi: 10.1126/science.246.4936.1400 PubMedCrossRefADSGoogle Scholar
  2. 2.
    A.L. Kholkin, M.L. Calzada, P. Ramos, J. Mendiola, N. Setter, Appl. Phys. Lett. 69, 362 (1996). doi: 10.1063/1.117220 CrossRefGoogle Scholar
  3. 3.
    R. Takayama, Y. Tomita, I. Ueda, J. Appl. Phys. 63, 5868 (1988). doi: 10.1063/1.340276 CrossRefADSGoogle Scholar
  4. 4.
    S. Ezhilvalavan, V. Samper, Appl. Phys. Lett. 87, 72901 (2005). doi: 10.1063/1.1864234 CrossRefGoogle Scholar
  5. 5.
    S.B. Xiong, Z.G. Liu, N. Xu, Ferroelectrics 195, 171 (1997). doi: 10.1080/00150199708260513 CrossRefGoogle Scholar
  6. 6.
    J.C. Shin, J.M. Lee, S.K. Hong, H.J. Cho, K.S. Kim, C.S. Hwang et al., J. Vac. Sci. Technol. A 16, 2591 (1998). doi: 10.1116/1.581387 CrossRefGoogle Scholar
  7. 7.
    S. Bhaskar, S.B. Majumder, R.R. Das, P.S. Dobal, R.S. Katiyar, S.B. Krupanidhi, Mater. Sci. Eng. B 86, 172 (2001). doi: 10.1016/S0921-5107(01)00684-5 CrossRefGoogle Scholar
  8. 8.
    D. Dimos, R.W. Schwartz, S.J. Lockwood, J. Am. Ceram. Soc. 77, 3000 (1995). doi: 10.1111/j.1151-2916.1994.tb04536.x CrossRefGoogle Scholar
  9. 9.
    S.J. Lee, C.R. Cho, M.S. Kang, M.S. Jang, K.Y. Kang, Appl. Phys. Lett. 68, 764 (1996). doi: 10.1063/1.116735 CrossRefADSGoogle Scholar
  10. 10.
    Y. Wu, G. Cao, Appl. Phys. Lett. 75, 2650 (1999). doi: 10.1063/1.125107 CrossRefGoogle Scholar
  11. 11.
    S. Ezhilvalavan, V. Samper, T. Weiseng, J.M. Xue, J. Wang, J. Appl. Phys. 96, 2181 (2004). doi: 10.1063/1.1766096 CrossRefADSGoogle Scholar
  12. 12.
    C. Kwok, S.B. Desu, J. Mater. Res. 8, 339 (1993). doi: 10.1557/JMR.1993.0339 CrossRefGoogle Scholar
  13. 13.
    T.L. Ren, L.T. Zhang, L.T. Liu, Z.J. Li, US Patent No.: 6,507,060 B2 (2003).Google Scholar
  14. 14.
    T.L. Ren, L.T. Zhang, L.T. Liu, Z.J. Li, J. Phys. D Appl. Phys. (Berl.) 33, L77 (2000)Google Scholar
  15. 15.
    Y.K. Wang, T.Y. Tseng, P. Lin, Appl. Phys. Lett. 80, 3790 (2002). doi: 10.1063/1.1480099 CrossRefADSGoogle Scholar
  16. 16.
    S.H. Kim, Y.S. Choi, C.E. Kim, D.Y. Yang, Thin Solid Films 325, 72 (1998). doi: 10.1016/S0040-6090(98)00486-6 CrossRefGoogle Scholar
  17. 17.
    S. Ezhilvalavan, V. Samper, J.Y. Ying, Appl. Phys. Lett. 87, 252907 (2005). doi: 10.1063/1.2150275 CrossRefGoogle Scholar
  18. 18.
    S. Ezhilvalavan, V. Samper, Appl. Phys. Lett. 87, 132902 (2005). doi: 10.1063/1.2041820 CrossRefADSGoogle Scholar
  19. 19.
    S. Ezhilvalavan, T.Y. Tseng, J. Appl. Phys. 83, 4797 (1998). doi: 10.1063/1.367272 CrossRefADSGoogle Scholar
  20. 20.
    S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)Google Scholar
  21. 21.
    J. O’Dwyer, Theory of Electrical Conduction and Breakdown in Solid Dielectrics (Clarendon, Oxford, England, 1973)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.New Materials Technology Development CentreSchool of Applied Science, Republic PolytechnicSingaporeSingapore

Personalised recommendations