Skip to main content
Log in

Investigation on impact strength of the as-soldered Sn37Pb and Sn3.8Ag0.7Cu solder joints

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Charpy impact specimens of eutectic Sn37Pb and Sn3.8Ag0.7Cu solder joints with U-type notch were prepared to investigate the joint impact strength. The gap sizes of the butt joint were selected at 0.3 and 0.8 mm. Compared with the values of 0.3 mm joint gap, the impact absorbed energies of two solder joints were increased at the joint gap of 0.8 mm. The impact strengths of Sn37Pb joints were higher than those of Sn3.8Ag0.7Cu joints in both cases. From the macrographic observation of the fracture path, when the gap was 0.3 mm, the crack initiation of two solder joints located at the root of U-type notch then propagated along one interface of the joint. For the Sn37Pb joints, the fracture path was not changed at 0.8 mm gap size. However, the fracture path of Sn3.8Ag0.7Cu joint was totally changed and the fracture occurred not at the root of pre-U notch but from one side of the solder/Cu interfaces. From the micrographic observation, the crack of the Sn37Pb joints was concentrated on the Pb-rich layer in the vicinity of interfacial intermetallic (IMC) layer and the fracture morphology mainly appeared to be a ductile-like structure. Meanwhile, the fracture of Sn3.8Ag0.7Cu joints propagated along either the interface of IMC/solder or within the IMC layer and showed a brittle failure mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K.N. Tu, A.M. Gusak, M. Li, J. Appl. Phys. 93(3), 1335–1353 (2003). doi:10.1063/1.1517165

    Article  ADS  CAS  Google Scholar 

  2. Directive 2002/95/EC. The Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment. The European Parliament and of the Council of the European Union, 27 January 2003

  3. J.J. Sundelin, S.T. Nurmib, T.K. Lepistö, E.O. Ristolainen, Mater Sci Eng A 420, 55–62 (2006). doi:10.1016/j.msea.2006.01.065

    Article  Google Scholar 

  4. N. Bonda, I. Noyan, IEEE Trans. Comp. Pack. Manufact. Technol. 19A, 208 (1996). doi:10.1109/95.506106

    Article  Google Scholar 

  5. H. Lee, H. Lin, C. Lee, P. Chen, Mater. Sci. Eng. A 407, 36 (2005). doi:10.1016/j.msea.2005.07.049

    Article  Google Scholar 

  6. M. Nishiura, A. Nakayama, S. Sakatani, Y. Kohara, K. Uenishi, K.F. Kobayashi, Mater. Trans. 43, 1802 (2002). doi:10.2320/matertrans.43.1802

    Article  CAS  Google Scholar 

  7. W. Plumbridge, R. Matela, A. Westwater, Structural Integrity and Reliability in Electronics (Kluwer Academic Publishers, London, 2003)

    Google Scholar 

  8. C.M.L. Wu, M.L. Huang, Y.C. Chan, J.K.L. Lai, J. Electron. Mater. 29, 1015 (2000). doi:10.1007/s11664-000-0166-5

    Article  ADS  CAS  Google Scholar 

  9. J. Glazer, J. Electron. Mater. 23, 693 (1994). doi:10.1007/BF02651361

    Article  ADS  CAS  Google Scholar 

  10. J.H. Vincent, G. Humpston, GEC J. Res. 11, 76 (1994)

    Google Scholar 

  11. M. Date, T. Shoji, M. Fujiyoshi, K. Sato, K.N. Tu, Scripta Mater. 51, 641–645 (2004). doi:10.1016/j.scriptamat.2004.06.027

    Article  CAS  Google Scholar 

  12. D. Suh, D.W. Kim, P. Liu, H. Kim, J.A. Weninger, C.M. Kumar et al., Mater. Sci. Eng. A 460–461, 595–603 (2007). doi:10.1016/j.msea.2007.01.145

  13. W. Peng, M.E. Marques, J. Electron. Mater. 36, 1679–1690 (2007). doi:10.1007/s11664-007-0260-z

  14. C.M. Kumar, Internal Report, Intel Corporation, 2006

  15. Y.-S. Lai, P.-F. Yang, C.-L. Yeh, Microelectron. Reliab. 46, 645–650 (2006). doi:10.1016/j.microrel.2005.07.005

    Google Scholar 

  16. P. Zimprich, A. Betzwar-Kotas, G. Khatibi, B. Weiss, H. Ipser, J. Mater. Sci. Mater. Electron 19, 383–388 (2008). doi:10.1007/s10854-007-9349-7

    Article  CAS  Google Scholar 

  17. P. Ratchev, B. Vandevelde, B. Verlinden, B. Allaert, D. Werkhoven, IEEE Trans. Comp. Pack. Technol. 30 (2007) 416–423

    Google Scholar 

  18. H.-T. Lee, M.-H. Chen, H.-M. Jao, T.-L. Liao. Mater. Sci. Eng. A 358, 134–141 (2003). doi:10.1016/S0921-5093(03)00277-6

    Google Scholar 

Download references

Acknowledgements

The present work was performed under the financial support of the National 863 Hi-Tech Scheme (No. 2002AA322040) and the key program for the 11th five-Year Plan (No. 2006BAE03B02) of the China Department of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, N., Shi, Y., Xia, Z. et al. Investigation on impact strength of the as-soldered Sn37Pb and Sn3.8Ag0.7Cu solder joints. J Mater Sci: Mater Electron 20, 499–506 (2009). https://doi.org/10.1007/s10854-008-9757-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-008-9757-3

Keywords

Navigation