Advertisement

Investigation on impact strength of the as-soldered Sn37Pb and Sn3.8Ag0.7Cu solder joints

  • Ning Zhang
  • Yaowu Shi
  • Zhidong Xia
  • Yongping Lei
  • Fu Guo
  • Xiaoyan Li
Article

Abstract

Charpy impact specimens of eutectic Sn37Pb and Sn3.8Ag0.7Cu solder joints with U-type notch were prepared to investigate the joint impact strength. The gap sizes of the butt joint were selected at 0.3 and 0.8 mm. Compared with the values of 0.3 mm joint gap, the impact absorbed energies of two solder joints were increased at the joint gap of 0.8 mm. The impact strengths of Sn37Pb joints were higher than those of Sn3.8Ag0.7Cu joints in both cases. From the macrographic observation of the fracture path, when the gap was 0.3 mm, the crack initiation of two solder joints located at the root of U-type notch then propagated along one interface of the joint. For the Sn37Pb joints, the fracture path was not changed at 0.8 mm gap size. However, the fracture path of Sn3.8Ag0.7Cu joint was totally changed and the fracture occurred not at the root of pre-U notch but from one side of the solder/Cu interfaces. From the micrographic observation, the crack of the Sn37Pb joints was concentrated on the Pb-rich layer in the vicinity of interfacial intermetallic (IMC) layer and the fracture morphology mainly appeared to be a ductile-like structure. Meanwhile, the fracture of Sn3.8Ag0.7Cu joints propagated along either the interface of IMC/solder or within the IMC layer and showed a brittle failure mode.

Keywords

Solder Joint Impact Strength Fracture Path Bulk Solder Cu6Sn5 Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The present work was performed under the financial support of the National 863 Hi-Tech Scheme (No. 2002AA322040) and the key program for the 11th five-Year Plan (No. 2006BAE03B02) of the China Department of Science and Technology.

References

  1. 1.
    K.N. Tu, A.M. Gusak, M. Li, J. Appl. Phys. 93(3), 1335–1353 (2003). doi: 10.1063/1.1517165 CrossRefADSGoogle Scholar
  2. 2.
    Directive 2002/95/EC. The Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment. The European Parliament and of the Council of the European Union, 27 January 2003Google Scholar
  3. 3.
    J.J. Sundelin, S.T. Nurmib, T.K. Lepistö, E.O. Ristolainen, Mater Sci Eng A 420, 55–62 (2006). doi: 10.1016/j.msea.2006.01.065 CrossRefGoogle Scholar
  4. 4.
    N. Bonda, I. Noyan, IEEE Trans. Comp. Pack. Manufact. Technol. 19A, 208 (1996). doi: 10.1109/95.506106 CrossRefGoogle Scholar
  5. 5.
    H. Lee, H. Lin, C. Lee, P. Chen, Mater. Sci. Eng. A 407, 36 (2005). doi: 10.1016/j.msea.2005.07.049 CrossRefGoogle Scholar
  6. 6.
    M. Nishiura, A. Nakayama, S. Sakatani, Y. Kohara, K. Uenishi, K.F. Kobayashi, Mater. Trans. 43, 1802 (2002). doi: 10.2320/matertrans.43.1802 CrossRefGoogle Scholar
  7. 7.
    W. Plumbridge, R. Matela, A. Westwater, Structural Integrity and Reliability in Electronics (Kluwer Academic Publishers, London, 2003)Google Scholar
  8. 8.
    C.M.L. Wu, M.L. Huang, Y.C. Chan, J.K.L. Lai, J. Electron. Mater. 29, 1015 (2000). doi: 10.1007/s11664-000-0166-5 CrossRefADSGoogle Scholar
  9. 9.
    J. Glazer, J. Electron. Mater. 23, 693 (1994). doi: 10.1007/BF02651361 CrossRefADSGoogle Scholar
  10. 10.
    J.H. Vincent, G. Humpston, GEC J. Res. 11, 76 (1994)Google Scholar
  11. 11.
    M. Date, T. Shoji, M. Fujiyoshi, K. Sato, K.N. Tu, Scripta Mater. 51, 641–645 (2004). doi: 10.1016/j.scriptamat.2004.06.027 CrossRefGoogle Scholar
  12. 12.
    D. Suh, D.W. Kim, P. Liu, H. Kim, J.A. Weninger, C.M. Kumar et al., Mater. Sci. Eng. A 460–461, 595–603 (2007). doi: 10.1016/j.msea.2007.01.145
  13. 13.
    W. Peng, M.E. Marques, J. Electron. Mater. 36, 1679–1690 (2007). doi: 10.1007/s11664-007-0260-z
  14. 14.
    C.M. Kumar, Internal Report, Intel Corporation, 2006Google Scholar
  15. 15.
    Y.-S. Lai, P.-F. Yang, C.-L. Yeh, Microelectron. Reliab. 46, 645–650 (2006). doi: 10.1016/j.microrel.2005.07.005 Google Scholar
  16. 16.
    P. Zimprich, A. Betzwar-Kotas, G. Khatibi, B. Weiss, H. Ipser, J. Mater. Sci. Mater. Electron 19, 383–388 (2008). doi: 10.1007/s10854-007-9349-7 CrossRefGoogle Scholar
  17. 17.
    P. Ratchev, B. Vandevelde, B. Verlinden, B. Allaert, D. Werkhoven, IEEE Trans. Comp. Pack. Technol. 30 (2007) 416–423Google Scholar
  18. 18.
    H.-T. Lee, M.-H. Chen, H.-M. Jao, T.-L. Liao. Mater. Sci. Eng. A 358, 134–141 (2003). doi: 10.1016/S0921-5093(03)00277-6 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ning Zhang
    • 1
  • Yaowu Shi
    • 1
  • Zhidong Xia
    • 1
  • Yongping Lei
    • 1
  • Fu Guo
    • 1
  • Xiaoyan Li
    • 1
  1. 1.College of Materials Science and EngineeringBeijing University of TechnologyBeijingPeoples’ Republic of China

Personalised recommendations