Photoluminescence and magnetic properties of β-Ni(OH)2 nanoplates and NiO nanostructures

  • Yajun Qi
  • Hongyan Qi
  • Chaojing Lu
  • Ye Yang
  • Yong Zhao


Single-crystalline β-nickel hydroxide (β-Ni(OH)2) nanoplates of hexagonal structure have been synthesized through hydrothermal process. The β-Ni(OH)2 nanoplates possess well-defined hexagonal shapes with landscape dimension of 45–140 nm and thickness of 20–50 nm. Post-thermal decomposition of the β-Ni(OH)2 nanoplates led to the formation of single-crystalline NiO nanostructures with landscape dimension of 25–120 nm including nanorolls, nanotroughs and nanoplates. The sizes of the central hole in NiO nanorolls and the low-lying ground in NiO nanotroughs are in the range of 10–24 nm. Two photoluminescence emission peaks appear at 390.5 nm and 467 nm in the photoluminescence spectrum of NiO nanostructures and were assigned to the 1T1 g (G) → 3A2 g and 1T2 g (D) → 3A2 g transitions of Ni2+ in oxygen octahedral sites, respectively. Temperature-dependent magnetic measurement results show that an antiferromagnetic-paramagnetic transition occur at 26.3 K in β-Ni(OH)2 nanoplates.


Select Area Electron Diffraction Pattern Brucite Nickel Hydroxide Transmission Electron Microscopy Investigation Landscape Dimension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank S. S. Pan and Prof. G. H. Li for help in photoluminescence measurement. This work was supported by the Research Foundation of Ph.D-degree-conferred subject in University (20070512002), the Program for New Century Excellent Talents (NCET) in University, and the Program for Excellent Young Scientists in Wuhan City, China.


  1. 1.
    S.R. Ovshinsky, M.A. Fetcenko, J. Ross, Science 260, 176 (1993). doi: 10.1126/science.260.5105.176 PubMedCrossRefADSGoogle Scholar
  2. 2.
    J.X. Dai, A.F.Y. Li, T.D. Xiao, D.M. Wang, D.E. Reisner, J. Power Sources 89, 40 (2000). doi: 10.1016/S0378-7753(00)00391-8 CrossRefGoogle Scholar
  3. 3.
    P. Oliva, J. Leonardi, J.F. Laurent, C. Delmas, J.J. Braconnier, M. Figlarz, F. Fievet, A. De Guibert, J. Power Sources 8, 229 (1982). doi: 10.1016/0378-7753(82)80057-8 CrossRefGoogle Scholar
  4. 4.
    M. Rajamathi, G.N. Subbanna, P.V. Kamath, J. Mater. Chem. 7, 2293 (1997). doi: 10.1039/a700390k CrossRefGoogle Scholar
  5. 5.
    H. Bode, K. Dehmelt, J. Wittle, Electrochim. Acta 11, 1079 (1966). doi: 10.1016/0013-4686(66)80045-2 CrossRefGoogle Scholar
  6. 6.
    M.C. Bernard, R. Cortes, M. Keddam, H. Takenouti, P. Bernard, S.J. Senyarich, Power Sources 63, 247 (1996). doi: 10.1016/S0378-7753(96)02482-2 CrossRefGoogle Scholar
  7. 7.
    K. Watanabe, T. Kikuoka, J. Appl. Electrochem. 25, 219 (1995). doi: 10.1007/BF00262959 CrossRefGoogle Scholar
  8. 8.
    D.E. Reisner, A.J. Salkind, P.R. Strutt, T.D. Xiao, J. Power Sources 65, 231 (1997). doi: 10.1016/S0378-7753(97)02486-5 CrossRefGoogle Scholar
  9. 9.
    F.S. Cai, G.Y. Zhang, J. Chen, X.L. Gou, H.K. Liu, S.X. Dou, Angew. Chem. 116, 4308 (2004). doi: 10.1002/ange.200460053 CrossRefGoogle Scholar
  10. 10.
    K. Matsui, T. Kyotani, A. Tomita, Adv. Mater. 14, 1216 (2002). doi: 10.1002/1521-4095(20020903)14:17<1216::AID-ADMA1216>3.0.CO;2-AGoogle Scholar
  11. 11.
    Z.H. Liang, Y.J. Zhu, X.L. Hu, J. Phys. Chem. B 108, 3488 (2004). doi: 10.1021/jp037513n CrossRefGoogle Scholar
  12. 12.
    X.H. Liu, G.Z. Qiu, Z. Wang, X.G. Li, Nanotech 16, 1400 (2005). doi: 10.1088/0957-4484/16/8/071 CrossRefADSGoogle Scholar
  13. 13.
    D.N. Yang, R.M. Wang, J. Zhang, Z.F. Liu, J. Phys. Chem. B 108, 7531 (2004). doi: 10.1021/jp0375867 CrossRefGoogle Scholar
  14. 14.
    Y.Y. Luo, G.T. Duan, G.H. Li, J. Solid State Chem. 180, 2149 (2007). doi: 10.1016/j.jssc.2007.05.025 CrossRefADSGoogle Scholar
  15. 15.
    M. Yoshio, Y. Todorov, K. Yamato, H. Noguchi, J. Itoh, M. Okada, T. Mouri, J. Power Sources 74, 46 (1998). doi: 10.1016/S0378-7753(98)00011-1 CrossRefGoogle Scholar
  16. 16.
    B. Sheela, H. Gomathi, G.P. Rao, J. Electroanal. Chem. 394, 267 (1995). doi: 10.1016/0022-0728(95)04099-A CrossRefGoogle Scholar
  17. 17.
    C.B. Alcock, B.Z. Li, J.W. Fergus, L. Wang, Solid State Ionics 53, 39 (1992). doi: 10.1016/0167-2738(92)90362-S CrossRefGoogle Scholar
  18. 18.
    A.C. Felic, F. Lama, M.J. Piacentini, J. Appl. Phys. 80, 3678 (1997)Google Scholar
  19. 19.
    D. Adler, J. Feinleib, Phys. Rev. B 2, 3112 (1970). doi: 10.1103/PhysRevB.2.3112 CrossRefADSGoogle Scholar
  20. 20.
    X. Wang, J.M. Song, L.S. Gao, Nanotechnology 16, 37 (2005). doi: 10.1088/0957-4484/16/1/009 CrossRefADSGoogle Scholar
  21. 21.
    J.H. Choy, S.Y. Kwak, J.S. Park, Y.J. Jeong, J. Portier, J. Am. Chem. Soc. 121, 1399 (1999). doi: 10.1021/ja981823f CrossRefGoogle Scholar
  22. 22.
    H. Sato, A. Yamagishi, K. Kawamura, J. Phys. Chem. B 105, 7990 (2001). doi: 10.1021/jp004491l CrossRefGoogle Scholar
  23. 23.
    J.T. Sampanthar, H.C. Zeng, J. Am. Chem. Soc. 124, 6668 (2002). doi: 10.1021/ja012595j PubMedCrossRefGoogle Scholar
  24. 24.
    N.F. Mott, R. Perls, Proc. Phys. Soc. (Extra Part) 49, 72 (1937). doi: 10.1088/0959-5309/49/4S/308 CrossRefADSGoogle Scholar
  25. 25.
    C. Díaz-Guerra, A. Remón, J.A. García, J. Piqueras, Phys. Stat. Sol. (a) 163, 497 (1997). doi: 10.1002/1521-396X(199710)163:2<497::AID-PSSA497>3.0.CO;2-ZCrossRefADSGoogle Scholar
  26. 26.
    T. Tsuboi, W. Kleeman, J. Phys. Condens Mat 6, 8625 (1994). doi: 10.1088/0953-8984/6/41/024 CrossRefGoogle Scholar
  27. 27.
    M. Sorai, A. Kosaki, H. Suga, S. Seki, J. Chem. Thermodynam. 1, 119 (1969). doi: 10.1016/0021-9614(69)90052-4 CrossRefGoogle Scholar
  28. 28.
    W.J. Moor, Seven Solid States (W.A. Benjamin, INC, New York, 1967), p. 134Google Scholar
  29. 29.
    L. Néel, in Low Temperature Physics, ed. by C. Dewitt et al. (Gordan and Beach, New York, 1962), p. 413Google Scholar
  30. 30.
    M. Ghosh, K. Biswas, A. Sundaresana, C.N.R. Rao, J. Mater. Chem. 16, 106 (2006). doi: 10.1039/b511920k CrossRefGoogle Scholar
  31. 31.
    Y. Ichiyanagia, N. Wakabayashi, J. Yamazaki, S. Yamada, Y. Kimishima, E. Komatsu, H. Tajima, Physica B 329–333, 862 (2003). doi: 10.1016/S0921-4526(02)02578-4 CrossRefGoogle Scholar
  32. 32.
    S.D. Tiwari, K.P. Rajeev, Phys. Rev. B 72, 104433 (2005). doi: 10.1103/PhysRevB.72.104433 CrossRefADSGoogle Scholar
  33. 33.
    S.D. Tiwari, K.P. Rajeev, Thin Solid Films 505, 113 (2006). doi: 10.1016/j.tsf.2005.10.019 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringHubei UniversityWuhanPeople’s Republic of China
  2. 2.Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key LaboratoryQingdao UniversityQingdaoPeople’s Republic of China
  3. 3.Superconductivity R&D CenterSouthwest Jiaotong UniversityChengduPeople’s Republic of China
  4. 4.School of Materials Science and EngineeringUniversity of New South WalesSydneyAustralia

Personalised recommendations