Advertisement

Experiments and simulations of uniaxial ratchetting deformation of Sn–3Ag–0.5Cu and Sn–37Pb solder alloys

  • Takuji Kobayashi
  • Katsuhiko Sasaki
Article

Abstract

This paper discusses uniaxial ratchetting deformation of lead-free solder alloy Sn–3Ag–0.5Cu and lead-containing solder alloy Sn–37Pb, which were subjected to tension–compression loading with several stress amplitudes and stress ratios, minimum stress over maximum stress. First the uniaxial ratchetting tests were conducted with three maximum stresses and four stress ratios. All tests were conducted using cylindrical bulk specimens of the solder alloys at 313 K. The test results show that there are differences in the ratchetting deformation behavior of the two solder alloys; the larger ratchetting strain occurs in the lead-containing solder alloy than in the lead-free solder alloy. The ratchetting deformation was simulated by the dislocation based constitutive model proposed by Estrin et al. (J Eng Mater Technol 118:441, 1996). The evolution equation of the back stress employed in the constitutive model was modified considering a dynamic recovery term. The effect of the modification of the back stress evolution is discussed by comparing the simulations with the corresponding experimental results. The simulations suggest that the recovery term in the kinematic hardening rule plays an important role in fitting the simulation to the experimental results of the ratchetting deformation of the solder alloys.

Keywords

Solder Joint Constitutive Model Stress Ratio Solder Alloy Back Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work is financially supported by The Foundation for Technology Promotion of Electronic Circuit Board, Japan.

References

  1. 1.
    Official Journal of the European Union L37 (Office for Official Publications of the European Communities, Luxembourg, 2003), p. 19Google Scholar
  2. 2.
    X.Q. Shi, W. Zhou, H.L.J. Pang, Z.P. Wang, J. Electron. Packag. 121, 179 (1999). doi: 10.1115/1.2792681 CrossRefGoogle Scholar
  3. 3.
    X. Chen, D.H. Yu, K.S. Kim, Mater. Sci. Eng. A 406, 86 (2005). doi: 10.1016/j.msea.2005.06.013 CrossRefGoogle Scholar
  4. 4.
    S. Vaynman, E.F. Morris, D.A. Jeannotte, in Solder mechanics—a state of the art assessment, ed. by D.R. Frear, W.B. Jones, K.R. Kinsman (The Minerals, Metals and Materials Society, Pennsylvania, 1991), p. 155Google Scholar
  5. 5.
    K. Ohguchi, K. Sasaki, M. Ishibashi, T. Hoshino, JSME Int. J. Ser. A47, 371 (2004). doi: 10.1299/jsmea.47.371 CrossRefGoogle Scholar
  6. 6.
    K. Ohguchi, K. Sasaki, M. Ishibashi, J. Electron. Mater. 35, 132 (2006). doi: 10.1007/s11664-006-0195-9 CrossRefADSGoogle Scholar
  7. 7.
    X.J. Yang, C.L. Chow, K.J. Lau, Int. J. Fatigue 25, 533 (2003). doi: 10.1016/S0142-1123(02) 00150-0 CrossRefGoogle Scholar
  8. 8.
    Z.X. Wang, I. Dutta, B.S. Majumdar, Mater. Sci. Eng. A421, 133 (2006). doi: 10.1016/j.msea.2005.10.026 Google Scholar
  9. 9.
    H.T. Lee, H.S. Lin, C.S. Lee, P.W. Chena, Mater. Sci. Eng. A407, 36 (2005). doi: 10.1016/j.msea.2005.07.049 Google Scholar
  10. 10.
    S. Vaynman, S.-A. McKeown, IEEE Trans. Compon. 16, 317 (1993)Google Scholar
  11. 11.
    H.D. Solomon, E.D. Tolksdorf, J. Electron. Packag. 117, 130 (1995). doi: 10.1115/1.2792079 CrossRefGoogle Scholar
  12. 12.
    H. Ishikawa, K. Sasaki, K. Ohguchi, J. Electron. Packag. 118, 164 (1996). doi: 10.1115/1.2792147 CrossRefGoogle Scholar
  13. 13.
    X. Chen, G. Chen, Mater. Des. 28, 85 (2007). doi: 10.1016/j.matdes.2005.05.020 MATHGoogle Scholar
  14. 14.
    J.L. Chaboche, D. Nouailhas, J. Eng. Mater. Technol. 111, 424 (1989)CrossRefGoogle Scholar
  15. 15.
    N. Ohno, J.-D. Wang, Int. J. Plast. 9, 375 (1993). doi: 10.1016/0749-6419(93) 90042-O MATHCrossRefGoogle Scholar
  16. 16.
    N. Ohno, J.-D. Wang, Int. J. Plast. 9, 391 (1993). doi: 10.1016/0749-6419(93) 90043-P CrossRefGoogle Scholar
  17. 17.
    N. Onho, Int. J. Mech. Sci. 40(2–3), 251 (1998). doi: 10.1016/S0020-7403(97) 00053-2 Google Scholar
  18. 18.
    T. Hassan, S. Kyriakides, Int. J. Plast. 10(2), 149 (1994). doi: 10.1016/0749-6419(94) 90033-7 MATHCrossRefGoogle Scholar
  19. 19.
    G. Kang, Y. Liu, Z. Li, Mater. Sci. Eng. A 435–436, 396 (2006). doi: 10.1016/j.msea.2006.07.006 Google Scholar
  20. 20.
    H.Y. Lee, J. Kim, J.H. Lee, Int. J. Press. Vessels Piping 80, 41 (2003). doi: 10.1016/S0308-0161(02)00136-9 CrossRefGoogle Scholar
  21. 21.
    G. Chen, X. Chen, C.D. Niu, Mater. Sci. Eng. A 421, 238 (2006). doi: 10.1016/j.msea.2006.01.052 CrossRefGoogle Scholar
  22. 22.
    X. Chen, D.H. Yu, K.S. Kim, Mater. Sci. Eng. A 406, 86 (2006). doi: 10.1016/j.msea.2005.06.013 Google Scholar
  23. 23.
    K. Sasaki, T. Kobayashi, K. Ohguchi, J. Electron. Packag. 129, 82 (2007). doi: 10.1115/1.2429714 CrossRefGoogle Scholar
  24. 24.
    W. Ren, Z. Qian, M. Lu, S. Liu, J. Electron. Packag. 121, 271 (1999). doi: 10.1115/1.2793851 CrossRefGoogle Scholar
  25. 25.
    C. Basaran, C.S. Desai, T. Kundu, J. Electron. Packag. 120, 41 (1998). doi: 10.1115/1.2792284 CrossRefGoogle Scholar
  26. 26.
    C. Basaran, C.S. Desai, T. Kundu, J. Electron. Packag. 120, 48 (1998). doi: 10.1115/1.2792285 CrossRefGoogle Scholar
  27. 27.
    L. Maciucescu, T.-L. Sham, E. Krempl, J. Electron. Packag. 121, 92 (1999). doi: 10.1115/1.2792673 CrossRefGoogle Scholar
  28. 28.
    R. Chandaroy, C. Basaran, J. Electron. Packag. 121, 61 (1999). doi: 10.1115/1.2792669 CrossRefGoogle Scholar
  29. 29.
    C.Y. Fu, D.L. McDowell, I.C. Ume, J. Electron. Packag. 120, 24 (1998). doi: 10.1115/1.2792281 CrossRefGoogle Scholar
  30. 30.
    C.Y. Fu, D.L. McDowell, I.C. Ume, J. Electron. Packag. 124, 45 (2002). doi: 10.1115/1.1401737 CrossRefGoogle Scholar
  31. 31.
    G.Z. Wang, Z.N. Cheng, K. Becker, J. Wilde, J. Electron. Packag. 123, 247 (2001). doi: 10.1115/1.1371781 CrossRefGoogle Scholar
  32. 32.
    S. Yi, G. Luo, K.S. Chian, J. Electron. Packag. 124, 91 (2002). doi: 10.1115/1.1451845 CrossRefGoogle Scholar
  33. 33.
    D.L. McDowell, Int. J. Plast. 8, 695 (1992). doi: 10.1016/0749-6419(92) 90024-7 MATHCrossRefGoogle Scholar
  34. 34.
    L. Anand, Int. J. Plast. 1, 213 (1985). doi: 10.1016/0749-6419(85) 90004-X MATHCrossRefGoogle Scholar
  35. 35.
    Y. Estrin, H. Braasch, Y. Brechet, J. Eng. Mater. Technol. 118, 441 (1996). doi: 10.1115/1.2805940 CrossRefGoogle Scholar
  36. 36.
    Standard of Tensile Testing for Solder Alloys (The Society of Materials Science, Committee of High-Temperature Strength Division, Kyoto, Japan, 2000)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Division of Human Mechanical Systems and DesignHokkaido UniversitySapporoJapan

Personalised recommendations