Nanoscale films of organic dyes for broadband environmental sensing

  • Basudev Pradhan
  • Ashwani K. Sharma
  • Asim K. Ray


Two types of suitably substituted organic dye molecules namely copper phthalocyanine and Rose Bengal were electrostatically self-assembled on gold-coated glass substrates, the gold surface being modified with poly(allylaminehydrochloridethe). The surface plasmon resonance technique was employed to investigate the sensing properties of organic dyes on exposure to three different volatile organic compounds. The films using phthalocyanine molecules were considered to be an optimal material because of its fast response and full recovery. This behaviour is attributed to the film surface morphology, molecular orientation in the film architecture, and sizes and dipole moments of vapours.


Surface Plasmon Resonance Volatile Organic Compound Phthalocyanine Rose Bengal Copper Phthalocyanine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is sponsored by the Air Force Office of Scientific Research, Air Force Material Command, USAF, under Grant No. FA8655-03-1-3070. The U.S. Government is authorized to reproduce and distribute reprints for Government purpose notwithstanding any copyright notation thereon.


  1. 1.
    M.C. Petty, Gas sensing using thin organic films. Biosens. Bioelectron. 10, 129–134 (1995). doi: 10.1016/0956-5663(95)96800-E CrossRefGoogle Scholar
  2. 2.
    J.D. Swalen, Molecular films. Annu. Rev. Mater. Sci. 21, 373–408 (1991)CrossRefGoogle Scholar
  3. 3.
    J.H. Fendler, F.C. Meldrum, Adv. Mater. 7, 607 (1995). doi: 10.1002/adma.19950070703 CrossRefGoogle Scholar
  4. 4.
    P.T. Hammond, Adv. Mater. 16(15), 1271–1293 (2004). doi: 10.1002/adma.200400760 CrossRefGoogle Scholar
  5. 5.
    G. Decher, in Multilayer Thin Films-Sequenial Assembly of Nanocomposite Materials, ed. by J.B. Schlenoff (Wiley-VCH, Weinheim, Germany, 2003)Google Scholar
  6. 6.
    A.K. Ray, A.V. Nabok, in Handook of Polyelectrolytes and Their Applications, vol. 3, ed. by S.K. Tripathy, J. Kumar, H.S. Nalwa (American Scientific Publishers, 2002), pp. 69–98Google Scholar
  7. 7.
    T.H. Cui, F. Hua, Y. Lvov, Sens. Actuat. A-Phys. 114(2–3), 501–504 (2004). doi: 10.1016/j.sna.2004.01.023 CrossRefGoogle Scholar
  8. 8.
    S.L. Clark, P.T. Hammond, Langmuir 16(26), 10206–10214 (2000). doi: 10.1021/la000418a CrossRefGoogle Scholar
  9. 9.
    S. Shiratori, M.F. Rubner, Macromolecules 33, 4213–4219 (2000). doi: 10.1021/ma991645q CrossRefADSGoogle Scholar
  10. 10.
    S. Fujita, S. Shiratori, Nanotechnology 16(9), 1821–1827 (2005). doi: 10.1088/0957-4484/16/9/068 CrossRefADSGoogle Scholar
  11. 11.
    P.S. Grant, M.J. McShane, IEEE Sens. J. 3(2), 139–146 (2003). doi: 10.1109/JSEN.2002.807484 CrossRefGoogle Scholar
  12. 12.
    R. Nohria, R.K. Khillan, Y. Su, R. Dikshit, Y. Lvov, K. Varahramyan, Sens. Actuat. B-Chem. 114(1), 218–222 (2006). doi: 10.1016/j.snb.2005.04.034 CrossRefGoogle Scholar
  13. 13.
    V. Zucolotto, M. Ferreira, M.R. Cordeiro, C.J.L. Constantino, W.C. Moreira, O.N. Oliveira, Sens. Actuat. B-Chem. 113(2), 809–815 (2006). doi: 10.1016/j.snb.2005.03.114 CrossRefGoogle Scholar
  14. 14.
    B. Mukherjee, A.J. Pal, Chem. Phys. Lett. 416(4–6), 289–292 (2005). doi: 10.1016/j.cplett.2005.09.102 CrossRefADSGoogle Scholar
  15. 15.
    A. Bandyopadhyay, A.J. Pal, J. Phys. Chem. B 109(13), 6084–6088 (2005). doi: 10.1021/jp0452507 PubMedCrossRefGoogle Scholar
  16. 16.
    X. Liu, D.Q. Song, Q.L. Zhang, Y. Tian, L. Ding, H.Q. Zhang, Trac-Trends Anal. Chem. 24(10), 887–893 (2005). doi: 10.1016/j.trac.2005.05.010 CrossRefGoogle Scholar
  17. 17.
    A. Palumbo, J. Nagel, M.C. Petty, IEEE J. Sens. 5(6), 1159–1164 (2005). doi: 10.1109/JSEN.2005.857878 CrossRefGoogle Scholar
  18. 18.
    A. Palumbo, C. Pearson, J. Nagel, M.C. Petty, Sens. Actuat. B-Chem. 91(1–3), 291–297 (2003). doi: 10.1016/S0925-4005(03)00104-7 CrossRefGoogle Scholar
  19. 19.
    R. Capan, A.K. Ray, T. Tanrisever, A.K. Hassan, Smart Mater. Struct. 14, N11–N15 (2005)CrossRefGoogle Scholar
  20. 20.
    I. Pockrand, Surf. Sci. 72(3), 577–588 (1978). doi: 10.1016/0039-6028(78)90371-0 CrossRefADSGoogle Scholar
  21. 21.
    D. Aspnes, in Optical Properties of Solids: New Developments, vol. 15, ed. by B.O. Seraphuin (North-Holland, Amsterdam, 1976), chapt. V, p. 803Google Scholar
  22. 22.
    A. Stendal, U. Beckers, S. Wilbrandt, O. Stenzel, C. von Borczyskowski, J. Phys. B: At. Mol. Opt. Phys. 29(12), 2589–2595 (1996). doi: 10.1088/0953-4075/29/12/020 CrossRefADSGoogle Scholar
  23. 23.
    S.R. Shield, J.M. Harris, Anal. Chem. 74(10), 2248–2256 (2002). doi: 10.1021/ac010772t PubMedCrossRefGoogle Scholar
  24. 24.
    T.M. Aminabhavi, V.B. Patil, J. Chem. Eng. Data 42(3), 641–646 (1997). doi: 10.1021/je960382 h CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Basudev Pradhan
    • 1
  • Ashwani K. Sharma
    • 2
  • Asim K. Ray
    • 3
  1. 1.Department of Solid State PhysicsIndian Association for the Cultivation of ScienceKolkataIndia
  2. 2.Air Force Research LaboratorySpace Vehicles Directorate, Kirtland AFBAlbuquerqueUSA
  3. 3.Nanotechnology Research Laboratories, The Department of MaterialsQueen Mary, University of LondonLondonUK

Personalised recommendations