Skip to main content
Log in

Nanoscale films of organic dyes for broadband environmental sensing

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Two types of suitably substituted organic dye molecules namely copper phthalocyanine and Rose Bengal were electrostatically self-assembled on gold-coated glass substrates, the gold surface being modified with poly(allylaminehydrochloridethe). The surface plasmon resonance technique was employed to investigate the sensing properties of organic dyes on exposure to three different volatile organic compounds. The films using phthalocyanine molecules were considered to be an optimal material because of its fast response and full recovery. This behaviour is attributed to the film surface morphology, molecular orientation in the film architecture, and sizes and dipole moments of vapours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.C. Petty, Gas sensing using thin organic films. Biosens. Bioelectron. 10, 129–134 (1995). doi:10.1016/0956-5663(95)96800-E

    Article  CAS  Google Scholar 

  2. J.D. Swalen, Molecular films. Annu. Rev. Mater. Sci. 21, 373–408 (1991)

    Article  CAS  Google Scholar 

  3. J.H. Fendler, F.C. Meldrum, Adv. Mater. 7, 607 (1995). doi:10.1002/adma.19950070703

    Article  CAS  Google Scholar 

  4. P.T. Hammond, Adv. Mater. 16(15), 1271–1293 (2004). doi:10.1002/adma.200400760

    Article  CAS  Google Scholar 

  5. G. Decher, in Multilayer Thin Films-Sequenial Assembly of Nanocomposite Materials, ed. by J.B. Schlenoff (Wiley-VCH, Weinheim, Germany, 2003)

    Google Scholar 

  6. A.K. Ray, A.V. Nabok, in Handook of Polyelectrolytes and Their Applications, vol. 3, ed. by S.K. Tripathy, J. Kumar, H.S. Nalwa (American Scientific Publishers, 2002), pp. 69–98

  7. T.H. Cui, F. Hua, Y. Lvov, Sens. Actuat. A-Phys. 114(2–3), 501–504 (2004). doi:10.1016/j.sna.2004.01.023

    Article  CAS  Google Scholar 

  8. S.L. Clark, P.T. Hammond, Langmuir 16(26), 10206–10214 (2000). doi:10.1021/la000418a

    Article  CAS  Google Scholar 

  9. S. Shiratori, M.F. Rubner, Macromolecules 33, 4213–4219 (2000). doi:10.1021/ma991645q

    Article  CAS  ADS  Google Scholar 

  10. S. Fujita, S. Shiratori, Nanotechnology 16(9), 1821–1827 (2005). doi:10.1088/0957-4484/16/9/068

    Article  ADS  CAS  Google Scholar 

  11. P.S. Grant, M.J. McShane, IEEE Sens. J. 3(2), 139–146 (2003). doi:10.1109/JSEN.2002.807484

    Article  CAS  Google Scholar 

  12. R. Nohria, R.K. Khillan, Y. Su, R. Dikshit, Y. Lvov, K. Varahramyan, Sens. Actuat. B-Chem. 114(1), 218–222 (2006). doi:10.1016/j.snb.2005.04.034

    Article  CAS  Google Scholar 

  13. V. Zucolotto, M. Ferreira, M.R. Cordeiro, C.J.L. Constantino, W.C. Moreira, O.N. Oliveira, Sens. Actuat. B-Chem. 113(2), 809–815 (2006). doi:10.1016/j.snb.2005.03.114

    Article  CAS  Google Scholar 

  14. B. Mukherjee, A.J. Pal, Chem. Phys. Lett. 416(4–6), 289–292 (2005). doi:10.1016/j.cplett.2005.09.102

    Article  ADS  CAS  Google Scholar 

  15. A. Bandyopadhyay, A.J. Pal, J. Phys. Chem. B 109(13), 6084–6088 (2005). doi:10.1021/jp0452507

    Article  PubMed  CAS  Google Scholar 

  16. X. Liu, D.Q. Song, Q.L. Zhang, Y. Tian, L. Ding, H.Q. Zhang, Trac-Trends Anal. Chem. 24(10), 887–893 (2005). doi:10.1016/j.trac.2005.05.010

    Article  CAS  Google Scholar 

  17. A. Palumbo, J. Nagel, M.C. Petty, IEEE J. Sens. 5(6), 1159–1164 (2005). doi:10.1109/JSEN.2005.857878

    Article  CAS  Google Scholar 

  18. A. Palumbo, C. Pearson, J. Nagel, M.C. Petty, Sens. Actuat. B-Chem. 91(1–3), 291–297 (2003). doi:10.1016/S0925-4005(03)00104-7

    Article  CAS  Google Scholar 

  19. R. Capan, A.K. Ray, T. Tanrisever, A.K. Hassan, Smart Mater. Struct. 14, N11–N15 (2005)

    Article  CAS  Google Scholar 

  20. I. Pockrand, Surf. Sci. 72(3), 577–588 (1978). doi:10.1016/0039-6028(78)90371-0

    Article  ADS  CAS  Google Scholar 

  21. D. Aspnes, in Optical Properties of Solids: New Developments, vol. 15, ed. by B.O. Seraphuin (North-Holland, Amsterdam, 1976), chapt. V, p. 803

  22. A. Stendal, U. Beckers, S. Wilbrandt, O. Stenzel, C. von Borczyskowski, J. Phys. B: At. Mol. Opt. Phys. 29(12), 2589–2595 (1996). doi:10.1088/0953-4075/29/12/020

    Article  ADS  CAS  Google Scholar 

  23. S.R. Shield, J.M. Harris, Anal. Chem. 74(10), 2248–2256 (2002). doi:10.1021/ac010772t

    Article  PubMed  CAS  Google Scholar 

  24. T.M. Aminabhavi, V.B. Patil, J. Chem. Eng. Data 42(3), 641–646 (1997). doi:10.1021/je960382 h

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is sponsored by the Air Force Office of Scientific Research, Air Force Material Command, USAF, under Grant No. FA8655-03-1-3070. The U.S. Government is authorized to reproduce and distribute reprints for Government purpose notwithstanding any copyright notation thereon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asim K. Ray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pradhan, B., Sharma, A.K. & Ray, A.K. Nanoscale films of organic dyes for broadband environmental sensing. J Mater Sci: Mater Electron 20, 267–271 (2009). https://doi.org/10.1007/s10854-008-9718-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-008-9718-x

Keywords

Navigation